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Preface

Every attempt to employ mathematical methods in the study of chemical questions
must be considered profoundly irrational and contrary to the spirit of chemistry. If
mathematical analysis should ever hold a prominent place in chemistry — an
aberration which is happily almost impossible — it would occasion a rapid and
widespread degeneration of that science.

Augustus Compte, French philosopher, 1798-1857; in Philosophie Positive,
1830.

A dissenting view:

The more progress the physical sciences make, the more they tend to enter the
domain of mathematics, which is a kind of center to which they all converge. We
may even judge the degree of perfection to which a science has arrived by the
facility to which it may be submitted to calculation.

Adolphe Quetelet, French astronomer, mathematician, statistician, and sociolo-
gist, 17961874, writing in 1828.

This second edition differs from the first in these ways:

1. The typographical errors that were found in the first edition have been (I hope)
corrected.

2. Those equations that should be memorized are marked by an asterisk, for

example *(2.1).

. Sentences and paragraphs have frequently been altered to clarify an explanation.

. The biographical footnotes have been updated as necessary.

5. Significant developments since 2003, up to near mid-2010, have been added and
referenced in the relevant places.

6. Some topics not in first edition, solvation effects, how to do CASSCF calcula-
tions, and transition elements, have been added.

W

As might be inferred from the word Introduction, the purpose of this book is to
teach the basics of the core concepts and methods of computational chemistry. This
is a textbook, and no attempt has been made to please every reviewer by dealing
with esoteric “advanced” topics. Some fundamental concepts are the idea of a

vii



viii Preface

potential energy surface, the mechanical picture of a molecule as used in molecular
mechanics, and the Schrodinger equation and its elegant taming with matrix
methods to give energy levels and molecular orbitals. All the needed matrix algebra
is explained before it is used. The fundamental methods of computational chemistry
are molecular mechanics, ab initio, semiempirical, and density functional methods.
Molecular dynamics and Monte Carlo methods are only mentioned; while these are
important, they utilize fundamental concepts and methods treated here. I wrote the
book because there seemed to be no text quite right for an introductory course in
computational chemistry suitable for a fairly general chemical audience; I hope it
will be useful to anyone who wants to learn enough about the subject to start
reading the literature and to start doing computational chemistry. There are excel-
lent books on the field, but evidently none that seeks to familiarize the general
student of chemistry with computational chemistry in the same sense that standard
textbooks of those subjects make organic or physical chemistry accessible. To that
end the mathematics has been held on a leash; no attempt is made to prove that
molecular orbitals are vectors in Hilbert space, or that a finite-dimensional inner-
product space must have an orthonormal basis, and the only sections that the
nonspecialist may justifiably view with some trepidation are the (outlined) deriva-
tion of the Hartree—Fock and Kohn—Sham equations. These sections should be read,
if only to get the flavor of the procedures, but should not stop anyone from getting
on with the rest of the book.

Computational chemistry has become a tool used in much the same spirit as
infrared or NMR spectroscopy, and to use it sensibly it is no more necessary to be
able to write your own programs than the fruitful use of infrared or NMR spectros-
copy requires you to be able to able to build your own spectrometer. I have tried to
give enough theory to provide a reasonably good idea of how the programs work. In
this regard, the concept of constructing and diagonalizing a Fock matrix is intro-
duced early, and there is little talk of secular determinants (except for historical
reasons in connection with the simple Hiickel method). Many results of actual
computations, most of them specifically for this book, are given. Almost all the
assertions in these pages are accompanied by literature references, which should
make the text useful to researchers who need to track down methods or results, and
students (i.e. anyone who is still learning anything) who wish to delve deeper. The
material should be suitable for senior undergraduates, graduate students, and novice
researchers in computational chemistry. A knowledge of the shapes of molecules,
covalent and ionic bonds, spectroscopy, and some familiarity with thermodynamics
at about the level provided by second- or third-year undergraduate courses is
assumed. Some readers may wish to review basic concepts from physical and
organic chemistry.

The reader, then, should be able to acquire the basic theory and a fair idea of the
kinds of results to be obtained from the common computational chemistry techni-
ques. You will learn how one can calculate the geometry of a molecule, its IR and
UV spectra and its thermodynamic and kinetic stability, and other information
needed to make a plausible guess at its chemistry.
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Computational chemistry is accessible. Hardware has become far cheaper than it
was even a few years ago, and powerful programs previously available only for
expensive workstations have been adapted to run on relatively inexpensive personal
computers. The actual use of a program is best explained by its manuals and by
books written for a specific program, and the actual directions for setting up the
various computations are not given here. Information on various programs is
provided in Chapter 9. Read the book, get some programs and go out and do
computational chemistry.

You may make mistakes, but they are unlikely to put you in the same kind of
danger that a mistake in a wet lab might.

It is a pleasure acknowledge the help of:

Professor Imre Csizmadia of the University of Toronto, who gave unstintingly of
his time and experience,

The students in my computational and other courses,

The generous and knowledgeable people who subscribe to CCL, the computational
chemistry list, an exceedingly helpful forum anyone seriously interested in the
subject,

My editor for the first edition at Kluwer, Dr Emma Roberts, who was always most
helpful and encouraging,

Professor Roald Hoffmann of Cornell University, for his insight and knowledge on
sometimes arcane matters,

Professor Joel Liebman of the University of Maryland, Baltimore County for
stimulating discussions,

Professor Matthew Thompson of Trent University, for stimulating discussions
The staff at Springer for the second edition: Dr Sonia Ojo who helped me to initiate
the project, and Mrs Claudia Culierat who assumed the task of continuing to assist
me in this venture and was always extremely helpful.

No doubt some names have been, unjustly, inadvertently omitted, for which I
tender my apologies.

Ontario, Canada E. Lewars
April 2010
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Chapter 1
An Outline of What Computational
Chemistry Is All About

Knowledge is experiment’s daughter
Leonardo da Vinci, in Pensieri, ca. 1492
Nevertheless:

Abstract You can calculate molecular geometries, rates and equilibria, spectra,
and other physical properties. The tools of computational chemistry are molecular
mechanics, ab initio, semiempirical and density functional methods, and molecular
dynamics. Computational chemistry is widely used in the pharmaceutical industry
to explore the interactions of potential drugs with biomolecules, for example by
docking a candidate drug into the active site of an enzyme. It is also used to
investigate the properties of solids (e.g. plastics) in materials science. It does not
replace experiment, which remains the final arbiter of truth about Nature.

1.1 What You Can Do with Computational Chemistry

Computational chemistry (also called molecular modelling; the two terms mean
about the same thing) is a set of techniques for investigating chemical problems on
a computer. Questions commonly investigated computationally are:

Molecular geometry: the shapes of molecules — bond lengths, angles and
dihedrals.

Energies of molecules and transition states: this tells us which isomer is favored
at equilibrium, and (from transition state and reactant energies) how fast a reaction
should go.

Chemical reactivity: for example, knowing where the electrons are concentrated
(nucleophilic sites) and where they want to go (electrophilic sites) enables us to
predict where various kinds of reagents will attack a molecule.

IR, UV and NMR spectra: these can be calculated, and if the molecule is
unknown, someone trying to make it knows what to look for.

E.G. Lewars, Computational Chemistry, 1
DOI 10.1007/978-90-481-3862-3_1, © Springer Science+Business Media B.V. 2011
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The interaction of a substrate with an enzyme: seeing how a molecule fits into
the active site of an enzyme is one approach to designing better drugs.

The physical properties of substances: these depend on the properties of indivi-
dual molecules and on how the molecules interact in the bulk material. For
example, the strength and melting point of a polymer (e.g. a plastic) depend on
how well the molecules fit together and on how strong the forces between them are.
People who investigate things like this work in the field of materials science.

1.2 The Tools of Computational Chemistry

In studying these questions computational chemists have a selection of methods at
their disposal. The main tools available belong to five broad classes:

Molecular mechanics is based on a model of a molecule as a collection of balls
(atoms) held together by springs (bonds). If we know the normal spring lengths
and the angles between them, and how much energy it takes to stretch and bend
the springs, we can calculate the energy of a given collection of balls and springs,
i.e. of a given molecule; changing the geometry until the lowest energy is found
enables us to do a geometry optimization, i.e. to calculate a geometry for the
molecule. Molecular mechanics is fast: a fairly large molecule like a steroid (e.g.
cholesterol, C,7H460) can be optimized in seconds on a good personal computer.

Ab Initio calculations (ab initio, Latin: “from the start”, i.e. from first princi-
ples”) are based on the Schrodinger equation. This is one of the fundamental
equations of modern physics and describes, among other things, how the electrons
in a molecule behave. The ab initio method solves the Schrodinger equation for a
molecule and gives us an energy and wavefunction. The wavefunction is a mathe-
matical function that can be used to calculate the electron distribution (and, in
theory at least, anything else about the molecule). From the electron distribution we
can tell things like how polar the molecule is, and which parts of it are likely to be
attacked by nucleophiles or by electrophiles.

The Schrodinger equation cannot be solved exactly for any molecule with more
than one (!) electron. Thus approximations are used; the less serious these are, the
“higher” the level of the ab initio calculation is said to be. Regardless of its level, an
ab initio calculation is based only on basic physical theory (quantum mechanics)
and is in this sense “from first principles”.

Ab initio calculations are relatively slow: the geometry and IR spectra (= the
vibrational frequencies) of propane can be calculated at a reasonably high level in
minutes on a personal computer, but a fairly large molecule, like a steroid, could
take perhaps days. The latest personal computers, with 2 or more GB of RAM and a
thousand or more gigabytes of disk space, are serious computational tools and now
compete with UNIX workstations even for the demanding tasks associated with
high-level ab initio calculations. Indeed, one now hears little talk of “workstations”,
machines costing ca. $15,000 or more [1].
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Semiempirical calculations are, like ab initio, based on the Schrodinger equation.
However, more approximations are made in solving it, and the very complicated
integrals that must be calculated in the ab initio method are not actually evaluated
in semiempirical calculations: instead, the program draws on a kind of library of
integrals that was compiled by finding the best fit of some calculated entity like
geometry or energy (heat of formation) to the experimental values. This plugging of
experimental values into a mathematical procedure to get the best calculated values is
called parameterization (or parametrization). It is the mixing of theory and experi-
ment that makes the method “semiempirical”: it is based on the Schrodinger equa-
tion, but parameterized with experimental values (empirical means experimental). Of
course one hopes that semiempirical calculations will give good answers for mole-
cules for which the program has not been parameterized.

Semiempirical calculations are slower than molecular mechanics but much
faster than ab initio calculations. Semiempirical calculations take roughly 100
times as long as molecular mechanics calculations, and ab initio calculations take
roughly 100-1,000 times as long as semiempirical. A semiempirical geometry
optimization on a steroid might take seconds on a PC.

Density functional calculations (DFT calculations, density functional theory)
are, like ab initio and semiempirical calculations, based on the Schrodinger equa-
tion However, unlike the other two methods, DFT does not calculate a conventional
wavefunction, but rather derives the electron distribution (electron density function)
directly. A functional is a mathematical entity related to a function.

Density functional calculations are usually faster than ab initio, but slower than
semiempirical. DFT is relatively new (serious DFT computational chemistry goes
back to the 1980s, while computational chemistry with the ab initio and semiem-
pirical approaches was being done in the 1960s).

Molecular dynamics calculations apply the laws of motion to molecules. Thus
one can simulate the motion of an enzyme as it changes shape on binding to a
substrate, or the motion of a swarm of water molecules around a molecule of solute;
quantum mechanical molecular dynamics also allows actual chemical reactions to
be simulated.

1.3 Putting It All Together

Very large biological molecules are studied mainly with molecular mechanics,
because other methods (quantum mechanical methods, based on the Schrodinger
equation: semiempirical, ab initio and DFT) would take too long. Novel molecules,
with unusual structures, are best investigated with ab initio or possibly DFT
calculations, since the parameterization inherent in MM or semiempirical methods
makes them unreliable for molecules that are very different from those used in the
parameterization. DFT is relatively new and its limitations are still unclear.
Calculations on the structure of large molecules like proteins or DNA are done with
molecular mechanics. The motions of these large biomolecules can be studied with
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molecular dynamics. Key portions of a large molecule, like the active site of an
enzyme, can be studied with semiempirical or even ab initio methods. Moderately
large molecules like steroids can be studied with semiempirical calculations, or if one
is willing to invest the time, with ab initio calculations. Of course molecular mech-
anics can be used with these too, but note that this technique does not give informa-
tion on electron distribution, so chemical questions connected with nucleophilic or
electrophilic behaviour, say, cannot be addressed by molecular mechanics alone.

The energies of molecules can be calculated by MM, SE, ab initio or DFT. The
method chosen depends very much on the particular problem. Reactivity, which
depends largely on electron distribution, must usually be studied with a quantum-
mechanical method (SE, ab initio or DFT). Spectra are most reliably calculated by ab
initio or DFT methods, but useful results can be obtained with SE methods, and some
MM programs will calculate fairly good IR spectra (balls attached to springs vibrate!).

Docking a molecule into the active site of an enzyme to see how it fits is an
extremely important application of computational chemistry. One could manipulate
the substrate with a mouse or a kind of joystick and try to fit it (dock it) into the
active site, with a feedback device enabling you to feel the forces acting on the
molecule being docked, but automated docking is now standard. This work is
usually done with MM, because of the large molecules involved, although selected
portions of the biomolecules can be studied by one of the quantum mechanical
methods. The results of such docking experiments serve as a guide to designing
better drugs, molecules that will interact better with the desired enzymes but be
ignored by other enzymes.

Computational chemistry is valuable in studying the properties of materials, i.e.
in materials science. Semiconductors, superconductors, plastics, ceramics — all
these have been investigated with the aid of computational chemistry. Such studies
tend to involve a knowledge of solid-state physics and to be somewhat specialized.

Computational chemistry is fairly cheap, it is fast compared to experiment, and it
is environmentally safe (although the profusion of computers in the last decade has
raised concern about the consumption of energy [2] and the disposal of obsolescent
machines [3]). It does not replace experiment, which remains the final arbiter of
truth about Nature. Furthermore, to make something — new drugs, new materials —
one has to go into the lab. However, computation has become so reliable in some
respects that, more and more, scientists in general are employing it before embar-
king on an experimental project, and the day may come when to obtain a grant for
some kinds of experimental work you will have to show to what extent you have
computationally explored the feasibility of the proposal.

1.4 The Philosophy of Computational Chemistry

Computational chemistry is the culmination (to date) of the view that chemistry is
best understood as the manifestation of the behavior of atoms and molecules, and
that these are real entities rather than merely convenient intellectual models [4]. It is
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a detailed physical and mathematical affirmation of a trend that hitherto found its
boldest expression in the structural formulas of organic chemistry [5], and it is the
unequivocal negation of the till recently trendy assertion [6] that science is a kind of
game played with “paradigms” [7].

In computational chemistry we take the view that we are simulating the beha-
viour of real physical entities, albeit with the aid of intellectual models; and that as
our models improve they reflect more accurately the behavior of atoms and
molecules in the real world.

1.5 Summary

Computational chemistry allows one to calculate molecular geometries, reactiv-
ities, spectra, and other properties. It employs:

Molecular mechanics — based on a ball-and-springs model of molecules

Ab initio methods — based on approximate solutions of the Schrodinger equation
without appeal to fitting to experiment

Semiempirical methods — based on approximate solutions of the Schrodinger
equation with appeal to fitting to experiment (i.e. using parameterization)

Density functional theory (DFT) methods — based on approximate solutions of the
Schrodinger equation, bypassing the wavefunction that is a central feature of ab
initio and semiempirical methods

Molecular dynamics methods study molecules in motion.

Ab initio and the faster DFT enable novel molecules of theoretical interest to be
studied, provided they are not too big. Semiempirical methods, which are much
faster than ab initio or even DFT, can be applied to fairly large molecules (e.g.
cholesterol, C,7H460), while molecular mechanics will calculate geometries and
energies of very large molecules such as proteins and nucleic acids; however,
molecular mechanics does not give information on electronic properties. Computa-
tional chemistry is widely used in the pharmaceutical industry to explore the inter-
actions of potential drugs with biomolecules, for example by docking a candidate
drug into the active site of an enzyme. It is also used to investigate the properties of
solids (e.g. plastics) in materials science.
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launched a revolution in physics. Free Press, New York; and Cercignani C (1998) Ludwig
Boltzmann: the man who trusted atoms. Oxford University Press, New York. Of course, to
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by 1910, since that science had by that time achieved significant success in the field of
synthesis, and a rational synthesis is predicated on assembling atoms in a definite way
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Facing up. Harvard University Press, Cambridge, MA, chapter 17
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Easier Questions

—

. What does the term computational chemistry mean?

What kinds of questions can computational chemistry answer?

Name the main tools available to the computational chemist. Outline (a few
sentences for each) the characteristics of each.

Generally speaking, which is the fastest computational chemistry method
(tool), and which is the slowest?

Why is computational chemistry useful in industry?

Basically, what does the Schrodinger equation describe, from the chemist’s
viewpoint?

What is the limit to the kind of molecule for which we can get an exact solution
to the Schrodinger equation?
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8.
9.
10.

What is parameterization?
What advantages does computational chemistry have over “wet chemistry”?
Why can’t computational chemistry replace “wet chemistry”?

Harder Questions

Discuss the following, and justify your conclusions.

1.

2.

10.

Was there computational chemistry before electronic computers were
available?

Can “conventional” physical chemistry, such as the study of kinetics, thermo-
dynamics, spectroscopy and electrochemistry, be regarded as a kind of compu-
tational chemistry?

The properties of a molecule that are most frequently calculated are geometry,
energy (compared to that of other isomers), and spectra. Why is it more of a
challenge to calculate “simple” properties like melting point and density?
Hint: is there a difference between a molecule X and the substance X?

Is it surprising that the geometry and energy (compared to that of other
isomers) of a molecule can often be accurately calculated by a ball-and-springs
model (molecular mechanics)?

. What kinds of properties might you expect molecular mechanics to be unable

to calculate?

Should calculations from first principles (ab initio) necessarily be preferred to
those which make some use of experimental data (semiempirical)?

Both experiments and calculations can give wrong answers. Why then should
experiment have the last word?

. Consider the docking of a potential drug molecule X into the active site of an

enzyme: a factor influencing how well X will “hold” is clearly the shape of X;
can you think of another factor?

Hint: molecules consist of nuclei and electrons.

In recent years the technique of combinatorial chemistry has been used to
quickly synthesize a variety of related compounds, which are then tested for
pharmacological activity (S. Borman, Chemical and Engineering News: 2001,
27 August, p. 49; 2000, 15 May, p. 53; 1999, 8 March, p. 33). What are the
advantages and disadvantages of this method of finding drug candidates,
compared with the “rational design” method of studying, with the aid of
computational chemistry, how a molecule interacts with an enzyme?

Think up some unusual molecule which might be investigated computation-
ally. What is it that makes your molecule unusual?



Chapter 2
The Concept of the Potential Energy Surface

Everything should be made as simple as possible, but not simpler.
Albert Einstein

Abstract The potential energy surface (PES) is a central concept in computational
chemistry. A PES is the relationship — mathematical or graphical — between
the energy of a molecule (or a collection of molecules) and its geometry. The
Born—Oppenheimer approximation says that in a molecule the nuclei are essentially
stationary compared to the electrons. This is one of the cornerstones of computa-
tional chemistry because it makes the concept of molecular shape (geometry)
meaningful, makes possible the concept of a PES, and simplifies the application
of the Schrodinger equation to molecules by allowing us to focus on the electronic
energy and add in the nuclear repulsion energy later; this third point, very important
in practical molecular computations, is elaborated on in Chapter 5. Geometry
optimization and transition state optimization are explained.

2.1 Perspective

We begin a more detailed look at computational chemistry with the potential energy
surface (PES) because this is central to the subject. Many important concepts that
might appear to be mathematically challenging can be grasped intuitively with the
insight provided by the idea of the PES [1].

Consider a diatomic molecule AB. In some ways a molecule behaves like balls
(atoms) held together by springs (chemical bonds); in fact, this simple picture is the
basis of the important method molecular mechanics, discussed in Chapter 3. If we
take a macroscopic balls-and-spring model of our diatomic molecule in its normal
geometry (the equilibrium geometry), grasp the “atoms” and distort the model by
stretching or compressing the “bonds”, we increase the potential energy of the
molecular model (Fig. 2.1). The stretched or compressed spring possesses energy,
by definition, since we moved a force through a distance to distort it. Since the

E.G. Lewars, Computational Chemistry, 9
DOI 10.1007/978-90-481-3862-3_2, © Springer Science+Business Media B.V. 2011
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model is motionless while we hold it at the new geometry, this energy is not kinetic
and so is by default potential (“depending on position”). The graph of potential
energy against bond length is an example of a potential energy surface. A line
is a one-dimensional “surface”; we will soon see an example of a more familiar

two-dimensional surface rather than the line of Fig. 2.1.

Real molecules behave similarly to, but differ from our macroscopic model in

two relevant ways:

1. They vibrate incessantly (as we would expect from Heisenberg’s uncertainty

principle: a stationary molecule would have an exactly defined momentum and
position) about the equilibrium bond length, so that they always possess kinetic
energy (T) and/or potential energy (V): as the bond length passes through the
equilibrium length, V = 0, while at the limit of the vibrational amplitude, T = 0;
at all other positions both 7" and V are nonzero. The fact that a molecule is never
actually stationary with zero kinetic energy (it always has zero point energy;
Section 2.5) is usually shown on potential energy/bond length diagrams by draw-
ing a series of lines above the bottom of the curve (Fig. 2.2) to indicate the
possible amounts of vibrational energy the molecule can have (the vibrational
levels it can occupy). A molecule never sits at the bottom of the curve, but rather
occupies one of the vibrational levels, and in a collection of molecules the levels
are populated according to their spacing and the temperature [2]. We will
usually ignore the vibrational levels and consider molecules to rest on the actual
potential energy curves or (see below) surfaces.

. Near the equilibrium bond length ¢g. the potential energy/bond length curve
for a macroscopic balls-and-spring model or a real molecule is described
fairly well by a quadratic equation, that of the simple harmonic oscillator
(E= (1/2) K (q — q.)*, where k is the force constant of the spring). However,
the potential energy deviates from the quadratic (¢%) curve as we move away
from ¢q. (Fig. 2.2). The deviations from molecular reality represented by this
anharmonicity are not important to our discussion.

energy

Fig. 2.1 The potential
energy surface for a diatomic
molecule. The potential
energy increases if the bond
length g is stretched or
compressed away from its
equilibrium value ¢.. The
potential energy at g, (zero
distortion of the bond length)
has been chosen here as the
zero of energy

%

bond length, q
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Fig. 2.2 Actual molecules do not sit still at the bottom of the potential energy curve, but instead
occupy vibrational levels. Also, only near ¢., the equilibrium bond length, does the quadratic curve
approximate the true potential energy curve

Figure 2.1 represents a one-dimensional PES in the two-dimensional graph of
E vs. g. A diatomic molecule AB has only one geometric parameter for us to vary,
the bond length gag. Suppose we have a molecule with more than one geometric
parameter, for example water: the geometry is defined by two bond lengths and a
bond angle. If we reasonably content ourselves with allowing the two bond lengths
to be the same, i.e. if we limit ourselves to C,, symmetry (two planes of symmetry
and a two-fold symmetry axis; see Section 2.6) then the PES for this triatomic
molecule is a graph of E versus two geometric parameters, ¢; = the O—H bond
length, and g, = the H-O-H bond angle (Fig. 2.3). Figure 2.3 represents a two-
dimensional PES (a normal surface is a 2-D object) in the three-dimensional graph;
we could make an actual 3-D model of this drawing of a 3-D graph of E versus
¢y and g,

We can go beyond water and consider a triatomic molecule of lower symmetry,
such as HOF, hypofluorous acid. This has three geometric parameters, the H-O and
O-F lengths and the H-O-F angle. To construct a Cartesian PES graph for HOF
analogous to that for H,O would require us to plot E vs. ¢; = H-0, g, = O-F, and
g5 = angle H-O-F. We would need four mutually perpendicular axes (for E, ¢4, ¢,
¢3, Fig. 2.4), and since such a four-dimensional graph cannot be constructed in our
three-dimensional space we cannot accurately draw it. The HOF PES is a 3-D
“surface” of more than two dimensions in 4-D space: it is a hypersurface, and
potential energy surfaces are sometimes called potential energy hypersurfaces.
Despite the problem of drawing a hypersurface, we can define the equation E = f
(91, 92, q3) as the potential energy surface for HOF, where f is the function that
describes how E varies with the ¢’s, and treat the hypersurface mathematically. For
example, in the AB diatomic molecule PES (a line) of Fig. 2.1 the minimum
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Fig. 2.3 The H,O potential energy surface. The point P,,;, corresponds to the minimum-energy
geometry for the three atoms, i.e. to the equilibrium geometry of the water molecule

Fig. 2.4 To plot energy
against three geometric
parameters in a Cartesian
coordinate system we would
need four mutually
perpendicular axes. Such a
coordinate system cannot be
actually constructed in our
three-dimensional space.
However, we can work with
such coordinate systems, and
the potential energy surfaces
in them, mathematically

energy

a1

g3

92

potential energy geometry is the point at which dE/dg = 0. On the H,O PES
(Fig. 2.3) the minimum energy geometry is defined by the point P,,,, corresponding
to the equilibrium values of ¢; and g,; at this point dE/dq, = dE/dg, = 0. Although
hypersurfaces cannot be faithfully rendered pictorially, it is very useful to a
computational chemist to develop an intuitive understanding of them. This can be
gained with the aid of diagrams like Figs. 2.1 and 2.3, where we content ourselves
with a line or a two-dimensional surface, in effect using a slice of a multidimen-
sional diagram. This can be understood by analogy: Fig. 2.5 shows how 2-D slices



2.2 Stationary Points 13

O\
energy A H- H

slice parallel to bond length axis

slice parallel to
angle axis

2D surface

7

g = O—H bond length

energy
energy ¥/
1D "surface’ 1D "surface"
bond angle bond length

Fig. 2.5 Slices through a 2D potential energy surface give 1D surfaces. A slice that is parallel to
neither axis would give a plot of geometry versus a composite of bond angle and bond length, a
kind of average geometry

can be made of the 3-D diagram for water. The slice could be made holding one or
the other of the two geometric parameters constant, or it could involve both of them,
giving a diagram in which the geometry axis is a composite of more than one
geometric parameter. Analogously, we can take a 3-D slice of the hypersurface for
HOF (Fig. 2.6) or even a more complex molecule and use an E versus ¢, ¢»
diagram to represent the PES; we could even use a simple 2D diagram, with ¢
representing one, two or all of the geometric parameters. We shall see that these 2D
and particularly 3D graphs preserve qualitative and even quantitative features of the
mathematically rigorous but unvisualizable £ = f(q1, ¢, ... ¢,) n-dimensional
hypersurface.

2.2 Stationary Points

Potential energy surfaces are important because they aid us in visualizing and under-
standing the relationship between potential energy and molecular geometry, and in
understanding how computational chemistry programs locate and characterize structures
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energy A

g, = O—F bond length

g1 = O—H bond length

Fig. 2.6 A potential energy surface (PES) for HOF. Here the HOF angle is not shown. This
picture could represent one of two possibilities: the angle might be the same (some constant,
reasonable value) for every calculated point on the surface; this would be an unrelaxed or rigid
PES. Alternatively, for each calculated point the geometry might be that for the best angle
corresponding to the other two parameters, i.e. the geometry for each calculated point might be
fully optimized (Section 2.4); this would be a relaxed PES

of interest. Among the main tasks of computational chemistry are to determine the
structure and energy of molecules and of the transition states involved in chemical
reactions: our “structures of interest” are molecules and the transition states linking
them. Consider the reaction

o o ~0 O Vs © AN
7 O o ~— " J—o
ozone transition state isoozone

reaction (2.1)

A priori, it seems reasonable that ozone might have an isomer (call it isoozone)
and that the two could interconvert by a transition state as shown in Reaction (2.1).
We can depict this process on a PES. The potential energy F must be plotted against
only two geometric parameters, the bond length (we may reasonably assume that
the two O—-O bonds of ozone are equivalent, and that these bond lengths remain
equal throughout the reaction) and the O—O-O bond angle. Figure 2.7 shows the
PES for Reaction (2.1), as calculated by the AM1 semiempirical method (Chapter
6; the AM1 method is unsuitable for quantitative treatment of this problem, but the
potential energy surface shown makes the point), and shows how a 2D slice from
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intrinsic reaction coordinate (IRC)

Fig. 2.7 The ozone/isoozone potential energy surface (calculated by the AM1 method; Chapter
6), a 2D surface in a 3D diagram. The dashed line on the surface is the reaction coordinate
(intrinsic reaction coordinate, IRC). A slice through the reaction coordinate gives a 1D “surface” in
a 2D diagram. The diagram is not meant to be quantitatively accurate

this 3D diagram gives the energy/reaction coordinate type of diagram commonly
used by chemists. The slice goes along the lowest-energy path connecting ozone,
isoozone and the transition state, that is, along the reaction coordinate, and the
horizontal axis (the reaction coordinate) of the 2D diagram is a composite of O—-O
bond length and O-O-O angle. In most discussions this horizontal axis is left
quantitatively undefined; qualitatively, the reaction coordinate represents the
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progress of the reaction. The three species of interest, ozone, isoozone, and the
transition state linking these two, are called stationary points. A stationary point on
a PES is a point at which the surface is flat, i.e. parallel to the horizontal line
corresponding to the one geometric parameter (or to the plane corresponding to two
geometric parameters, or to the hyperplane corresponding to more than two geo-
metric parameters). A marble placed on a stationary point will remain balanced, i.e.
stationary (in principle; for a transition state the balancing would have to be
exquisite indeed). At any other point on a potential surface the marble will roll
toward a region of lower potential energy.

Mathematically, a stationary point is one at which the first derivative of the
potential energy with respect to each geometric parameter is zero':

9E _9E _  _, (2.1)
9q; Oq,

Partial derivatives, OE/0Oq, are written here rather than dE/dg, to emphasize that
each derivative is with respect to just one of the variables ¢ of which E is a function.
Stationary points that correspond to actual molecules with a finite lifetime (in
contrast to transition states, which exist only for an instant), like ozone or isoozone,
are minima, or energy minima: each occupies the lowest-energy point in its region
of the PES, and any small change in the geometry increases the energy, as indicated
in Fig. 2.7. Ozone is a global minimum, since it is the lowest-energy minimum on
the whole PES, while isoozone is a relative minimum, a minimum compared only to
nearby points on the surface. The lowest-energy pathway linking the two minima,
the reaction coordinate or intrinsic reaction coordinate (IRC; dashed line in
Fig. 2.7) is the path that would be followed by a molecule in going from one
minimum to another should it acquire just enough energy to overcome the activa-
tion barrier, pass through the transition state, and reach the other minimum. Not all
reacting molecules follow the IRC exactly: a molecule with sufficient energy can
stray outside the IRC to some extent [3].

Inspection of Fig. 2.7 shows that the transition state linking the two minima
represents a maximum along the direction of the IRC, but along all other directions
it is a minimum. This is a characteristic of a saddle-shaped surface, and the
transition state is called a saddle point (Fig. 2.8). The saddle point lies at the
“center” of the saddle-shaped region and is, like a minimum, a stationary point,
since the PES at that point is parallel to the plane defined by the geometry parameter
axes: we can see that a marble placed (precisely) there will balance. Mathemati-
cally, minima and saddle points differ in that although both are stationary points
(they have zero first derivatives; Eq. 2.1), a minimum is a minimum in all direc-
tions, but a saddle point is a maximum along the reaction coordinate and a
minimum in all other directions (examine Fig. 2.8). Recalling that minima and
maxima can be distinguished by their second derivatives, we can write:

"Equations marked with an asterisk are those which should be memorized.
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energy

transition state

transition state
region

reaction coordinate

minimum

Fig. 2.8 A transition state or saddle point and a minimum. At both the transition state and the
minimum 0E/0g = 0 for all geometric coordinates ¢ (along all directions). At the transition state
OE?/ 5q2 < 0 for g = the reaction coordinate and > O for all other ¢ (along all other directions). Ata
minimum 0E?*/dq* > 0 for all ¢ (along all directions)

For a minimum

O’E
8_112 >0 (*2.2)
for all g.
For a transition state
O’E
8_qz >0 (*¥2.3)

for all ¢, except along the reaction coordinate, and

O’E .
o <0 (*2.4)
along the reaction coordinate.

The distinction is sometimes made between a transition state and a transition
structure [4]. Strictly speaking, a transition state is a thermodynamic concept, the
species an ensemble of which are in a kind of equilibrium with the reactants in
Eyring’s” transition-state theory [5]. Since equilibrium constants are determined by
free energy differences, the transition structure, within the strict use of the term, is a
free energy maximum along the reaction coordinate (in so far as a single species can

*Henry Eyring, American chemist. Born Colonia Juarirez, Mexico, 1901. Ph.D. University of
California, Berkeley, 1927. Professor Princeton, University of Utah. Known for his work on the
theory of reaction rates and on potential energy surfaces. Died Salt Lake City, Utah, 1981.
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be considered representative of the ensemble). This species is also often (but not
always [5]) also called an activated complex. A transition structure, in strict usage,
is the saddle point (Fig. 2.8) on a theoretically calculated (e.g. Fig. 2.7) PES.
Normally such a surface is drawn through a set of points each of which represents
the enthalpy of a molecular species at a certain geometry; recall that free energy
differs from enthalpy by temperature times entropy. The transition structure is thus
a saddle point on an enthalpy surface. However, the energy of each of the calculated
points does not normally include the vibrational energy, and even at 0 K a molecule
has such energy (zero point energy: Fig. 2.2, and Section 2.5). The usual calculated
PES is thus a hypothetical, physically unrealistic surface in that it neglects vibra-
tional energy, but it should qualitatively, and even semiquantitatively, resemble the
vibrationally-corrected one since in considering relative enthalpies ZPEs at least
roughly cancel. In accurate work ZPEs are calculated for stationary points and
added to the “frozen-nuclei” energy of the species at the bottom of the reaction
coordinate curve in an attempt to give improved relative energies which represent
enthalpy differences at 0 K (and thus, at this temperature where entropy is zero, free
energy differences also; Fig. 2.19). It is also possible to calculate enthalpy and
entropy differences, and thus free energy differences, at, say, room temperature
(Section 5.5.2). Many chemists do not routinely distinguish between the two terms,
and in this book the commoner term, transition state, is used. Unless indicated
otherwise, it will mean a calculated geometry, the saddle point on a hypothetical
vibrational-energy-free PES.

The geometric parameter corresponding to the reaction coordinate is usually a
composite of several parameters (bond lengths, angles and dihedrals), although for
some reactions one two may predominate. In Fig. 2.7, the reaction coordinate is a
composite of the O—O bond length and the O—O-O bond angle.

A saddle point, the point on a PES where the second derivative of energy with
respect to one and only geometric coordinate (possibly a composite coordinate) is
negative, corresponds to a transition state. Some PES’s have points where the
second derivative of energy with respect to more than one coordinate is negative;
these are higher-order saddle points or hilltops: for example, a second-order saddle
point is a point on the PES which is a maximum along rwo paths connecting
stationary points. The propane PES, Fig. 2.9, provides examples of a minimum, a
transition state and a hilltop — a second-order saddle point in this case. Figure 2.10
shows the three stationary points in more detail. The “doubly-eclipsed” conforma-
tion (Fig. 2.10a) in which there is eclipsing as viewed along the C1-C2 and the
C3—-C2 bonds (the dihedral angles are 0° viewed along these bonds) is a second-
order saddle point because single bonds do not like to eclipse single bonds and
rotation about the C1-C2 and the C3—C2 bonds will remove this eclipsing: there are
two possible directions along the PES which lead, without a barrier, to lower-energy
regions, i.e. changing the H-C1/C2—C3 dihedral and changing the H-C3/C2-C1
dihedral. Changing one of these leads to a “singly-eclipsed” conformation
(Fig. 2.10b) with only one offending eclipsing CH;—CH, arrangement, and this is
a first-order saddle point, since there is now only one direction along the PES which
leads to relief of the eclipsing interactions (rotation around C3—C2). This route
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C, minimum

Fig.2.9 The propane potential energy surface as the two HCCC dihedrals are varied (calculated
by the AM1 method, Chapter 6). Bond lengths and angles were not optimized as the dihedrals
were varied, so this is not a relaxed PES; however, changes in bond lengths and angles from
one propane conformation to another are small, and the relaxed PES should be very similar to
this one

gives a conformation C which has no eclipsing interactions and is therefore a
minimum. There are no lower-energy structures on the C3Hg PES and so C is the
global minimum.

The geometry of propane depends on more than just two dihedral angles, of
course; there are several bond lengths and bond angles and the potential energy will
vary with changes in all of them. Figure 2.9 was calculated by varying only the
dihedral angles associated with the C1-C2-C3-C4 bonds, keeping the other
geometrical parameters the same as they are in the all-staggered conformation. If
at every point on the dihedral/dihedral grid all the other parameters (bond lengths
and angles) had been optimized (adjusted to give the lowest possible energy, for
that particular calculational method; Section 2.4), the result would have been a
relaxed PES. In Fig. 2.9 this was not done, but because bond lengths and angles
change only slightly with changes in dihedral angles the PES would not be altered
much, while the time required for the calculation (for the potential energy surface
scan) would have been greater. Figure 2.9 is a nonrelaxed or rigid PES, albeit not
very different, in this case, from a relaxed one.

Chemistry is essentially the study of the stationary points on potential energy
surfaces: in studying more or less stable molecules we focus on minima, and
in investigating chemical reactions we study the passage of a molecule from a
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Fig. 2.10 The stationary points on the propane potential energy surface. Hydrogens at the end of

CH bonds are omitted for clarity

minimum through a transition state to another minimum. There are four known
forces in nature: the gravitational force, the strong and the weak nuclear forces, and
the electromagnetic force. Celestial mechanics studies the motion of stars and
planets under the influence of the gravitational force and nuclear physics studies
the behaviour of subatomic particles subject to the nuclear forces. Chemistry is
concerned with aggregates of nuclei and electrons (with molecules) held together
by the electromagnetic force, and with the shuffling of nuclei, followed by their
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obedient retinue of electrons, around a potential energy surface under the influence
of this force (with chemical reactions).

The concept of the chemical potential energy surface apparently originated with
R. Marcelin [6]: in a dissertation-long paper (111 pages) he laid the groundwork for
transition-state theory 20 years before the much better-known work of Eyring [5,7].
The importance of Marcelin’s work is acknowledged by Rudolph Marcus in his
Nobel Prize (1992) speech, where he refers to .. .Marcelin’s classic 1915 theory
which came within one small step of the transition state theory of 1935.” The paper
was published the year after the death of the author, who seems to have died in
World War I, as indicated by the footnote “Tué a I’ennemi en sept 1914”. The first
potential energy surface was calculated in 1931 by Eyring and Polanyi,” using a
mixture of experiment and theory [8].

The potential energy surface for a chemical reaction has just been presented as a
saddle-shaped region holding a transition state which connects wells containing
reactant(s) and products(s) (which species we call the reactant and which the
product is inconsequential here). This picture is immensely useful, and may well
apply to the great majority of reactions. However, for some reactions it is deficient.
Carpenter has shown that in some cases a reactive intermediate does not tarry in a
PES well and then proceed to react. Rather it appears to scoot over a plateau-shaped
region of the PES, retaining a memory (“dynamical information”) of the atomic
motions it acquired when it was formed. When this happens there are two (say)
intermediates with the same crass geometry, but different atomic motions, leading
to different products. The details are subtle, and the interested reader is commended
to the relevant literature [9].

2.3 The Born—Oppenheimer Approximation

A potential energy surface is a plot of the energy of a collection of nuclei and
electrons against the geometric coordinates of the nuclei — essentially a plot of
molecular energy versus molecular geometry (or it may be regarded as the mathe-
matical equation that gives the energy as a function of the nuclear coordinates). The
nature (minimum, saddle point or neither) of each point was discussed in terms of
the response of the energy (first and second derivatives) to changes in nuclear
coordinates. But if a molecule is a collection of nuclei and electrons why plot
energy versus nuclear coordinates — why not against electron coordinates? In other
words, why are nuclear coordinates the parameters that define molecular geometry?
The answer to this question lies in the Born—-Oppenheimer approximation.

3Michael Polanyi, Hungarian-British chemist, economist, and philosopher. Born Budapest 1891.
Doctor of medicine 1913, Ph.D. University of Budapest, 1917. Researcher Kaiser-Wilhelm
Institute, Berlin, 1920-1933. Professor of chemistry, Manchester, 1933-1948; of social studies,
Manchester, 1948-1958. Professor Oxford, 1958-1976. Best known for book ‘Personal
Knowledge”, 1958. Died Northampton, England, 1976.
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Born* and Oppenheimer” showed in 1927 [10] that to a very good approximation
the nuclei in a molecule are stationary with respect to the electrons. This is a
qualitative expression of the principle; mathematically, the approximation states
that the Schrodinger equation (Chapter 4) for a molecule may be separated into an
electronic and a nuclear equation. One consequence of this is that all (!) we have to
do to calculate the energy of a molecule is to solve the electronic Schrodinger
equation and then add the electronic energy to the internuclear repulsion (this latter
quantity is trivial to calculate) to get the total internal energy (see Section 4.4.1). A
deeper consequence of the Born—Oppenheimer approximation is that a molecule
has a shape.

The nuclei see the electrons as a smeared-out cloud of negative charge which
binds them in fixed relative positions (because of the mutual attraction between
electrons and nuclei in the internuclear region) and which defines the (somewhat
fuzzy) surface [11] of the molecule (see Fig. 2.11). Because of the rapid motion of
the electrons compared to the nuclei the “permanent” geometric parameters of the
molecule are the nuclear coordinates. The energy (and the other properties) of a
molecule is a function of the electron coordinates (E = Y¥(x, y, z of each electron);
Section 5.2), but depends only parametrically on the nuclear coordinates, i.e. for
each geometry 1, 2, ... there is a particular energy: E; =¥ (x, y,z...), E, = ¥5 (x,
v, z...); cf. X", which is a function of x but depends only parametrically on the
particular n.

/ o a, .

Fig. 2.11 The nuclei in a molecule see a time-averaged electron cloud. The nuclei vibrate about
equilibrium points which define the molecular geometry; this geometry can be expressed simply as
the nuclear Cartesian coordinates, or alternatively as bond lengths and angles r and a here) and
dihedrals, i.e. as internal coordinates. As far as size goes, the experimentally determined van der
Waals surface encloses about 98% of the electron density of a molecule

“Max Born, German-British physicist. Born in Breslau (now Wroclaw, Poland), 1882, died in
Gottingen, 1970. Professor Berlin, Cambridge, Edinburgh. Nobel Prize, 1954. One of the founders
of quantum mechanics, originator of the probability interpretation of the (square of the) wave-
function (Chapter 4).

5. Robert Oppenheimer, American physicist. Born in New York, 1904, died in Princeton 1967.
Professor California Institute of Technology. Fermi award for nuclear research, 1963. Important
contributions to nuclear physics. Director of the Manhattan Project 1943—-1945. Victimized as a
security risk by senator Joseph McCarthy’s Un-American Activities Committee in 1954. Central
figure of the eponymous PBS TV series (Oppenheimer: Sam Waterston).
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The Hz* cation: 3 protons, 2 electrons GD’/ /

Definite geometry

No definite geometry

Fig. 2.12 A molecule has a definite shape because unlike the electrons, the nuclei are (relatively)
stationary (since they are much more massive). If the masses of the nuclei and the electrons could
be made equal, the distinction in lethargy would be lost, and the molecular geometry would
dissolve

Actually, the nuclei are not stationary, but execute vibrations of small amplitude
about equilibrium positions; it is these equilibrium positions that we mean by the
“fixed” nuclear positions. It is only because it is meaningful to speak of (almost)
fixed nuclear coordinates that the concepts of molecular geometry or shape and of
the PES are valid [12]. The nuclei are much more sluggish than the electrons
because they are much more massive (a hydrogen nucleus is about 2,000 more
massive than an electron).

Consider the molecule H3", made up of three protons and two electrons. Ab
initio calculations assign it the geometry shown in Fig. 2.12. The equilibrium
positions of the nuclei (the protons) lie at the corners of an equilateral triangle
and H; ™" has a definite shape. But suppose the protons were replaced by positrons,
which have the same mass as electrons. The distinction between nuclei and elec-
trons, which in molecules rests on mass and not on some kind of charge chauvinism,
would vanish. We would have a quivering cloud of flitting particles to which a
shape could not be assigned on a macroscopic time scale.

A calculated PES, which we might call a Born—-Oppenheimer surface, is nor-
mally the set of points representing the geometries, and the corresponding energies,
of a collection of atomic nuclei; the electrons are taken into account in the calcula-
tions as needed to assign charge and multiplicity (multiplicity is connected with the
number of unpaired electrons). Each point corresponds to a set of stationary nuclei,
and in this sense the surface is somewhat unrealistic (see Section 2.5).

2.4 Geometry Optimization

The characterization (the “location” or “locating”) of a stationary point on a PES,
that is, demonstrating that the point in question exists and calculating its geometry
and energy, is a geometry optimization. The stationary point of interest might be a
minimum, a transition state, or, occasionally, a higher-order saddle point. Locating
a minimum is often called an energy minimization or simply a minimization, and
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locating a transition state is often referred to specifically as a transition state
optimization. Geometry optimizations are done by starting with an input structure
that is believed to resemble (the closer the better) the desired stationary point and
submitting this plausible structure to a computer algorithm that systematically
changes the geometry until it has found a stationary point. The curvature of the
PES at the stationary point, i.e. the second derivatives of energy with respect to the
geometric parameters (Section 2.2) may then be determined (Section 2.5) to
characterize the structure as a minimum or as some kind of saddle point.

Let us consider a problem that arose in connection with an experimental study.
Propanone (acetone) was subjected to ionization followed by neutralization of the
radical cation, and the products were frozen in an inert matrix and studied by IR
spectroscopy [13]. The spectrum of the mixture suggested the presence of the enol
isomer of propanone, 1-propen-2-ol (Reaction 2.2):

(@]

|
/ \

|

=
HaC CHs H,CZ  CHs

Reaction 2

To confirm (or refute) this the IR spectrum of the enol might be calculated (see
Section 2.5 and the discussions of the calculation of IR spectra in subsequent
chapters). But which conformer should one choose for the calculation? Rotation
about the C—O and C—C bonds creates six plausible stationary points (Fig. 2.13),

Fig. 2.13 The plausible
stationary points on the
propenol potential energy
surface. A PES scan

(Fig. 2.14) indicated that 1 is
the global minimum and 4 is a
relative minimum, while

2 and 3 are transition states
and 5 and 6 are hilltops. AM1
calculations gave relative
energies for 1,2, 3 and 4 of 0,
0.6, 14 and 6.5 kJ mol ',
respectively (5 and 6 were not
optimized). The arrows
represent one-step (rotation
about one bond) conversion
of one species into another
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Fig. 2.14 The 1-propen-2-ol potential energy surface (calculated by the AMI1 method) (see
Fig. 2.13)

and a PES scan (Fig. 2.14) indicated that there are indeed six such species.
Examination of this PES shows that the global minimum is structure 1 and that
there is a relative minimum corresponding to structure 4. Geometry optimization
starting from an input structure resembling 1 gave a minimum corresponding to 1,
while optimization starting from a structure resembling 4 gave another, higher-
energy minimum, resembling 4. Transition-state optimizations starting from appro-
priate structures yielded the transition states 2 and 3. These stationary points were
all characterized as minima or transition states by second-derivative calculations
(Section 2.5) (the species 5 and 6 were not located). The calculated IR spectrum of 1
(using the ab initio HF/6-31G* method — Chapter 5) was in excellent agreement
with the observed spectrum of the putative propenol.

This illustrates a general principle: the optimized structure one obtains is that
closest in geometry on the PES to the input structure (Fig. 2.15). To be sure we have
found a global minimum we must (except for very simple or very rigid molecules)
search a potential energy surface (there are algorithms that will do this and locate
the various minima). Of course we may not be interested in the global minimum; for
example, if we wish to study the cyclic isomer of ozone (Section 2.2) we will use as
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energy

several steps

geometry

Fig. 2.15 Geometry optimization to a minimum gives the minimum closest to the input structure.
The input structure A’ is moved toward the minimum A, and B’ toward B. To locate a transition
state a special algorithm is usually used: this moves the initial structure A’ toward the transition
state TS. Optimization to each of the stationary points would probably actually require several
steps (see Fig. 2.16)

input an equilateral triangle structure, probably with bond lengths about those of an
0-0 single bond.

In the propenol example, the PES scan suggested that to obtain the global
minimum we should start with an input structure resembling 1, but the exact values
of the various bond lengths and angles were unknown (the exact values of even the
dihedrals was not known with certainty, although general chemical knowledge
made H-O-C-C = H-C-C=C = 0° seem plausible). The actual creation of input
structures is usually done nowadays with an interactive mouse-driven program,
in much the same spirit that one constructs plastic models or draws structures
on paper. An older alternative is to specify the geometry by defining the various
bond lengths, angles and dihedrals, i.e. by using a so-called Z-matrix (internal
coordinates).

To move along the PES from the input structure to the nearest minimum is
obviously trivial on the one-dimensional PES of a diatomic molecule: one simply
changes the bond length till that corresponding to the lowest energy is found.
On any other surface, efficient geometry optimization requires a sophisticated
algorithm. One would like to know in which direction to move, and how far in
that direction (Fig. 2.16). It is not possible, in general, to go from the input structure
to the proximate minimum in just one step, but modern geometry optimization
algorithms commonly reach the minimum within about ten steps, given a reason-
able input geometry. The most widely-used algorithms for geometry optimization
[14] use the first and second derivatives of the energy with respect to the geometric
parameters. To get a feel for how this works, consider the simple case of a
one-dimensional PES, as for a diatomic molecule (Fig. 2.17). The input structure
is at the point P;(E;, ¢;) and the proximate minimum, corresponding to the
optimized structure being sought, is at the point P,(E,, ¢,). Before the optimization
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energy A

input structure

optimized structure

geometry

geometry

Fig. 2.16 An efficient optimization algorithm knows approximately in which direction to move
and how far to step, in an attempt to reach the optimized structure in relatively few (commonly

about five to ten) steps

Ef

E-Ey= k(g-q0)®

- Input structure
Pi(E;, q)

Equilibrium (optimized) structure
Po(Eo, Qo)

bond length, g

e

Fig. 2.17 The potential energy of a diatomic molecule near the equilibrium geometry is approxi-
mately a quadratic function of the bond length. Given an input structure (i.e. given the bond length
qi), a simple algorithm would enable the bond length of the optimized structure to be found in one

step, if the function were strictly quadratic
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has been carried out the values of E, and ¢, are of course unknown. If we assume
that near a minimum the potential energy is a quadratic function of ¢, which is a
fairly good approximation, then

E—E;=k(qg—q) 2.5)

Attheinputpoint (dE/dq); = 2k(q; — qo) (2.6)

Atallpoints  d’E/dq* = 2k (= force constant) 2.7)

From Eqs. (2.6) and (2.7), (dE/dq); = (d®E/dq”) (qi — qo) (2.8)
and g, = g — (dE/dq);/(d’E/dq?) (2.9)

Equation 2.9 shows that if we know (dE/dgq);, the slope or gradient of the PES
at the point of the initial structure, (dzE/dqz), the curvature of the PES (which for
a quadratic curve E(q) is independent of ¢) and ¢;, the initial geometry, we
can calculate ¢, the optimized geometry. The second derivative of potential energy
with respect to geometric displacement is the force constant for motion along
that geometric coordinate; as we will see later, this is an important concept in
connection with calculating vibrational spectra.

For multidimensional PES’s, i.e. for almost all real cases, far more sophisticated
algorithms are used, and several steps are needed since the curvature is not exactly
quadratic. The first step results in a new point on the PES that is (probably) closer to
the minimum than was the initial structure. This new point then serves as the initial
point for a second step toward the minimum, etc. Nevertheless, most modern
geometry optimization methods do depend on calculating the first and second
derivatives of the energy at the point on the PES corresponding to the input
structure. Since the PES is not strictly quadratic, the second derivatives vary from
point to point and are updated as the optimization proceeds.

In the illustration of an optimization algorithm using a diatomic molecule,
Eq. 2.9 referred to the calculation of first and second derivatives with respect to
bond length, which latter is an internal coordinate (inside the molecule). Optimi-
zations are actually commonly done using Cartesian coordinates x, y, z. Consider
the optimization of a triatomic molecule like HOF in a Cartesian coordinate
system. Each of the three atoms has an x, y and z coordinate, giving nine geometric
parameters, ¢1, ¢2, - - - , qo; the PES would be a nine-dimensional hypersurface on
a 10D graph. We need the first and second derivatives of E with respect to each of
the nine ¢’s, and these derivatives are manipulated as matrices. Matrices are
discussed in Section 4.3.3; here we need only know that a matrix is a rectangular
array of numbers that can be manipulated mathematically, and that they provide a
convenient way of handling sets of linear equations. The first-derivative matrix,
the gradient matrix, for the input structure can be written as a column matrix
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(OE/0q 1)1
(OE/0q,),
g = . (2.10)
(OE/0qq);
and the second-derivative matrix, the force constant matrix, is
OPE/0qiq1  O°E/0q1q;--- O°E/0q1q9
32E/3¢12111 82E/8q2q2 cee 82E/8q2q9
H= ) . ) (2.11)
OE/0qoq; O’E[0qeqz --- O°E/Oqoqe

The force constant matrix is called the Hessian.’ The Hessian is particularly
important, not only for geometry optimization, but also for the characterization of
stationary points as minima, transition states or hilltops, and for the calculation of
IR spectra (Section 2.5). In the Hessian 0°E/0q1q>» = 0°E/0qxqy, as is true for all
well-behaved functions, but this systematic notation is preferable: the first subscript
refers to the row and the second to the column. The geometry coordinate matrices
for the initial and optimized structures are

qi1
qdi2

q =1 . (2.12)
qi9

and

q = . (2.13)
409
The matrix equation for the general case can be shown to be:
q,=¢q-H'g (2.14)

which is analogous to Eq. 2.9 for the optimization of a diatomic molecule, which
could be written

G0 = ¢i — (°E/dq”) " (dE/dq);

6Ludwig Otto Hesse, 1811-1874, German mathematician.
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For n atoms we have 3n Cartesians; q,, (; and g; are 3n x 1 column matrices and
H is a 3n x 3n square matrix; multiplication by the inverse of H rather than division
by H is used because matrix division is not defined. Equation 2.14 shows that for an
efficient geometry optimization we need an initial structure (for q;), initial gradients
(for g;) and second derivatives (for H). With an initial “guess” for the geometry (for
example from a model-building program followed by molecular mechanics) as
input, gradients can be readily calculated analytically (from the derivatives of the
molecular orbitals and the derivatives of certain integrals). An approximate initial
Hessian is often calculated from molecular mechanics (Chapter 3). Since the PES is
not really exactly quadratic, the first step does not take us all the way to the
optimized geometry, corresponding to the matrix q,. Rather, we arrive at q, the
first calculated geometry; using this geometry a new gradient matrix and a new
Hessian are calculated (the gradients are calculated analytically and the second
derivatives are updated using the changes in the gradients — see below). Using q;
and the new gradient and Hessian matrices a new approximate geometry matrix q,
is calculated. The process is continued until the geometry and/or the gradients (or
with some programs possibly the energy) have ceased to change appreciably.

As the optimization proceeds the Hessian is updated by approximating each
second derivative as a ratio of finite increments:

OE _ A(OE/dq;)
0q:0q; Ag;

2.15)

i.e. as the change in the gradient divided by the change in geometry, on going from the
previous structure to the latest one. Analytic calculation of second derivatives is
relatively time-consuming and is not routinely done for each point along the optimi-
zation sequence, in contrast to analytic calculation of gradients. A fast lower-level
optimization, for a minimum or a transition state, usually provides a good Hessian and
geometry for input to a higher-level optimization [15]. Finding a transition state (i.e.
optimizing an input structure to a transition state structure) is a more challenging
computational problem than finding a minimum, as the characteristics of the PES at
the former are more complicated than at a minimum: at the transition state the surface
is a maximum in one direction and a minimum in all others, rather than simply a
minimum in all directions. Nevertheless, modifications of the minimum-search algo-
rithm enable transitions states to be located, albeit often with less ease than minima.

2.5 Stationary Points and Normal-Mode Vibrations — Zero
Point Energy

Once a stationary point has been found by geometry optimization, it is usually
desirable to check whether it is a minimum, a transition state, or a hilltop. This is
done by calculating the vibrational frequencies. Such a calculation involves finding
the normal-mode frequencies; these are the simplest vibrations of the molecule,
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which, in combination, can be considered to result in the actual, complex vibrations
that a real molecule undergoes. In a normal-mode vibration all the atoms move in
phase with the same frequency: they all reach their maximum and minimum
displacements and their equilibrium positions at the same moment. The other
vibrations of the molecule are combinations of these simple vibrations. Essentially,
a normal-modes calculation is a calculation of the infrared spectrum, although the
experimental spectrum is likely to contain extra bands resulting from interactions
among normal-mode vibrations.

A nonlinear molecule with n atoms has 3n — 6 normal modes: the motion of each
atom can be described by three vectors, along the x, y, and z axes of a Cartesian
coordinate system; after removing the three vectors describing the translational
motion of the molecule as a whole (the translation of its center of mass) and the
three vectors describing the rotation of the molecule (around the three principal
axes needed to describe rotation for a three-dimensional object of general geome-
try), we are left with 3n — 6 independent vibrational motions. Arranging these in
appropriate combinations gives 3n — 6 normal modes. A linear molecule has 3n — 5
normal modes, since we need subtract only three translational and two rotational
vectors, as rotation about the molecular axis does not produce a recognizable
change in the nuclear array. So water has 3n — 6 = 3(3) — 6 = 3 normal modes,
and HCN has 3n — 5 = 3(3) — 5 = 4 normal modes. For water (Fig. 2.18) mode 1 is
a bending mode (the H-O-H angle decreases and increases), mode 2 is a symmetric
stretching mode (both O—H bonds stretch and contract simultaneously) and mode 3
is an asymmetric stretching mode (as the O—H; bond stretches the O—H, bond
contracts, and vice versa). At any moment an actual molecule of water will be
undergoing a complicated stretching/bending motion, but this motion can be con-
sidered to be a combination of the three simple normal-mode motions.

Consider a diatomic molecule A—B; the normal-mode frequency (there is only
one for a diatomic, of course) is given by [16]:

~ 1 (k\'"?

where # = vibrational “frequency”, actually wavenumber, in cm™'; from deference
to convention we use cm~ ' although the cm is not an SI unit, and so the other units
will also be non-SI; » signifies the number of wavelengths that will fit into one cm.
The symbol » is the Greek letter nu, which resembles an angular vee; ¥ could be

0 o 0
N TR N
H H H H H H
1595cm™" 3652cm™ 3756cm™
bend symmetric stretch asymmetric stretch

Fig. 2.18 The normal-mode vibrations of water. The arrows indicate the directions in which the
atoms move; on reaching the maximum amplitude these directions are reversed
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read “nu tilde”; ¥, “nu bar”, has been used less frequently. ¢ = velocity of light, k =
force constant for the vibration, 4 = reduced mass of the molecule = (mamg)/(ma +
mg); ma and mg are the masses of A and B.

The force constant k of a vibrational mode is a measure of the “stiffness” of the
molecule toward that vibrational mode — the harder it is to stretch or bend the
molecule in the manner of that mode, the bigger is that force constant (for a
diatomic molecule k simply corresponds to the stiffness of the one bond). The
fact that the frequency of a vibrational mode is related to the force constant for the
mode suggests that it might be possible to calculate the normal-mode frequencies of
a molecule, that is, the directions and frequencies of the atomic motions, from its
force constant matrix (its Hessian). This is indeed possible: matrix diagonalization
of the Hessian gives the directional characteristics (which way the atoms are
moving), and the force constants themselves, for the vibrations. Matrix diagonali-
zation (Section 4.3.3) is a process in which a square matrix A is decomposed into
three square matrices, P, D, and P L A=PDP '.Disa diagonal matrix: as with k
in Eq. 2.17 all its off-diagonal elements are zero. P is a premultiplying matrix and
P! is the inverse of P. When matrix algebra is applied to physical problems, the
diagonal row elements of D are the magnitudes of some physical quantity, and each
column of P is a set of coordinates which give a direction associated with that
physical quantity. These ideas are made more concrete in the discussion accom-
panying Eq. 2.17, which shows the diagonalization of the Hessian matrix for a
triatomic molecule, e.g. H,O.

OPE[0qiq1 O°E/0q1q> -+ O*E[dq1q9

q_ | PEOwn FE[0qq - FE[0qqs
OPE[0qeq1  O*E[Dqoqr -+ O*E/dqoqo
qu g2 - qi9 kk 0 -~ O
Q1 g2 G 0 k --- 0 .

B (2.17)
gor g2 - G99 0 0 - ko
P k

Equation 2.17 is of the form A = PDP~'. The 9 x 9 Hessian for a triatomic
molecule (three Cartesian coordinates for each atom) is decomposed by diagona-
lization into a P matrix whose columns are “direction vectors” for the vibrations
whose force constants are given by the k matrix. Actually, columns 1, 2 and 3 of P
and the corresponding ky, k, and k3 of k refer to tranmslational motion of the
molecule (motion of the whole molecule from one place to another in space);
these three “force constants” are nearly zero. Columns 4, 5 and 6 of P and the
corresponding k4, k5 and k¢ of k refer to rotational motion about the three principal
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axes of rotation, and are also nearly zero. Columns 7, 8 and 9 of P and the
corresponding k7, kg and ko of k are the direction vectors and force constants,
respectively, for the normal-mode vibrations: k;, kg and ko refer to vibrational
modes 1, 2 and 3, while the seventh, eighth, and nineth columns of P are composed
of the x, y and z components of vectors for motion of the three atoms in mode 1
(column 7), mode 2 (column 8), and mode 3 (column 9). “Mass-weighting” the
force constants, i.e. taking into account the effect of the masses of the atoms (cf.
Eq. 2.16 for the simple case of a diatomic molecule), gives the vibrational frequen-
cies. The P matrix is the eigenvector matrix and the k matrix is the eigenvalue
matrix from diagonalization of the Hessian H. “Eigen” is a German prefix meaning
“appropriate, suitable, actual” and is used in this context to denote mathematically
appropriate entities for the solution of a matrix equation. Thus the directions of the
normal-mode frequencies are the eigenvectors, and their magnitudes are the mass-
weighted eigenvalues, of the Hessian.

Vibrational frequencies are calculated to obtain IR spectra, to characterize
stationary points, and to obtain zero point energies (below). The calculation of
meaningful frequencies is valid only at a stationary point and only using the same
method that was used to optimize to that stationary point (for example an ab initio
method with a particular correlation level and basis set — see Chapter 5). This is
because (1) the use of second derivatives as force constants presupposes that the
PES is quadratically curved along each geometric coordinate ¢ (Fig. 2.2) but it is
only near a stationary point that this is true, and (2) use of a method other than that
used to obtain the stationary point presupposes that the PES’s of the two methods
are parallel (that they have the same curvature) at the stationary point. Of course,
“provisional” force constants at nonstationary points are used in the optimization
process, as the Hessian is updated from step to step. Calculated IR frequencies are
usually somewhat too high, but (at least for ab initio and density functional
calculations) can be brought into reasonable agreement with experiment by multi-
plying them by an empirically determined factor, commonly about 0.9 [17] (see the
discussion of frequencies in Chapters 5-7).

A minimum on the PES has all the normal-mode force constants (all the
eigenvalues of the Hessian) positive: for each vibrational mode there is a restoring
force, like that of a spring. As the atoms execute the motion, the force pulls and
slows them till they move in the opposite direction; each vibration is periodic, over
and over. The species corresponding to the minimum sits in a well and vibrates
forever (or until it acquires enough energy to react). For a transition state, however,
one of the vibrations, that along the reaction coordinate, is different: motion of the
atoms corresponding to this mode takes the transition state toward the product or
toward the reactant, without a restoring force. This one “vibration” is not a periodic
motion but rather takes the species through the transition state geometry on a one-
way journey. Now, the force constant is the first derivative of the gradient or slope
(the derivative of the first derivative); examination of Fig. 2.8 shows that along the
reaction coordinate the surface slopes downward, so the force constant for this
mode is negative. A transition state (a first-order saddle point) has one and only one
negative normal-mode force constant (one negative eigenvalue of the Hessian).
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Since a frequency calculation involves taking the square root of a force constant
(Eq. 2.16), and the square root of a negative number is an imaginary number, a
transition state has one imaginary frequency, corresponding to the reaction coordi-
nate. In general an nth-order saddle point (an nth-order hilltop) has n negative
normal-mode force constants and so n imaginary frequencies, corresponding to
motion from one stationary point of some kind to another.

A stationary point could of course be characterized just from the number of
negative force constants, but the mass-weighting requires much less time than
calculating the force constants, and the frequencies themselves are often wanted
anyway, for example for comparison with experiment. In practice one usually
checks the nature of a stationary point by calculating the frequencies and seeing
how many imaginary frequencies are present; a minimum has none, a transition
state one, and a hilltop more than one. If one is seeking a particular transition state
the criteria to be satisfied are:

1. It should look right. The structure of a transition state should lie somewhere
between that of the reactants and the products; for example, the transition state
for the unimolecular isomerization of HCN to HNC shows an H bonded to both
C and N by an unusually long bond, and the CN bond length is in-between that of
HCN and HNC.

2. It must have one and only one imaginary frequency (some programs indicate
this as a negative frequency, e.g. —1,900 cm ™" instead of the correct 1,900i
(i =V (=1).

3. The imaginary frequency must correspond to the reaction coordinate. This is
usually clear from animation of the frequency (the motion, stretching, bending,
twisting, corresponding to a frequency may be visualized with a variety of
programs). For example, the transition state for the unimolecular isomerization
of HCN to HNC shows an imaginary frequency which when animated clearly
shows the H migrating between the C and the N. Should it not be clear from
animation which two species the transition state connects, one may resort to an
intrinsic reaction coordinate (IRC) calculation [18]. This procedure follows the
transition state downhill along the IRC (Section 2.2), generating a series of
structures along the path to the reactant or product. Usually it is clear where the
transition state is going without following it all the way to a stationary point.

4. The energy of the transition state must be higher than that of the two species it
connects.

Besides indicating the IR spectrum and providing a check on the nature of
stationary points, the calculation of vibrational frequencies also provides the
zero-point energy (ZPE; most programs will calculate this automatically as part
of a frequency job). The ZPE is the energy a molecule has even at absolute zero
(Fig. 2.2), as a consequence of the fact that even at this temperature it still vibrates
[2]. The ZPE of a species is usually not small compared to activation energies or
reaction energies, but ZPEs tend to cancel out when these energies are calculated
(by subtraction), since for a given reaction the ZPE of the reactant, transition state
and product tend to be roughly the same. However, for accurate work the ZPE
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Fig. 2.19 Correcting relative energies for zero-point energy (ZPE). These are ab initio HF/6-
31G* (Chapter 5) results for the HCN — HNC reaction. The corrections are most simply made by
adding the ZPE to the raw energy (in energy units called Hartrees or atomic units), to get the
corrected energies. Using corrected or uncorrected energies, relative energies are obtained by
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differences in Hartrees were multiplied by 2,626 to get kJ mol~". The ZPEs are also shown here in
kJ mol ™', just to emphasize that they are not small compared to reaction energies or activation
energies, but tend to cancel; for accurate work ZPE-corrected energies should be used

should be added to the “total” (electronic + nuclear repulsion) energies of species
and the ZPE-corrected energies should then be compared (Fig. 2.19). Like the
frequencies, the ZPE is usually corrected by multiplying it by an empirical factor;
this is sometimes the same as the frequency correction factor, but slightly different
factors have been recommended [17].

The Hessian that results from a geometry optimization was built up in steps from
one geometry to the next, approximating second derivatives from the changes in
gradients (Eq. 2.15). This Hessian is not accurate enough for the calculation of
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frequencies and ZPE’s. The calculation of an accurate Hessian for a stationary point
can be done analytically or numerically. Accurate numerical evaluation approx-
imates the second derivative as in Eq. 2.15, but instead of A(0V/0q) and Ag being
taken from optimization iteration steps, they are obtained by changing the position
of each atom of the optimized structure slightly (Ag = about 0.01 A) and calculat-
ing analytically the change in the gradient at each geometry; subtraction gives
A(0V/0q). This can be done for a change in one direction only for each atom
(method of forward differences) or more accurately by going in two directions
around the equilibrium position and averaging the gradient change (method of
central differences). Analytical calculation of ab initio frequencies is much faster
than numerical evaluation, but demands on computer hard drive space may make
numerical calculation the only recourse at high ab initio levels (Chapter 5).

2.6 Symmetry

Symmetry is important in theoretical chemistry (and even more so in theoretical
physics), but our interest in it here is bounded by modest considerations: we want to
see why symmetry is relevant to setting up a calculation and interpreting the results,
and to make sense of terms like C,,, Cq, etc., which are used in various places in this
book. Excellent expositions of symmetry are given by, for example, Atkins [19] and
Levine [20].

The symmetry of a molecule is most easily described by using one of the
standard designations like C,,, C,. These are called point groups (Schoenflies
point groups) because when symmetry operations (below) are carried out on a
molecule (on any object) with symmetry, at least one point is left unchanged. The
classification is according to the presence of symmetry elements and corresponding
symmetry operations. The main symmetry elements are mirror planes (symmetry
planes), symmetry axes, and an inversion center; other symmetry elements are the
entire object, and an improper rotation axis. The operation corresponding to a
mirror plane is reflection in that plane, the operation corresponding to a symmetry
axis is rotation about that axis, and the operation corresponding to an inversion
center is moving each point in the molecule along a straight line to that center then
moving it further, along the line, an equal distance beyond the center. The “entire
object” element corresponds to doing nothing (a null operation); in common
parlance an object with only this symmetry element would be said to have no
symmetry. The improper rotation axis corresponds to rotation followed by a
reflection through a plane perpendicular to that rotation axis. We are concerned
mainly with the first three symmetry elements. The examples below are shown in
Fig. 2.20.

C; A molecule with no symmetry elements at all is said to belong to the group C,
(to have “C; symmetry”). The only symmetry operation such a molecule permits is
the null operation — this is the only operation that leaves it unmoved. An example is
CHBrCIF, with a so-called asymmetric atom; in fact, most molecules have no
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symmetry — just think of steroids, alkaloids, proteins, most drugs. Note that a
molecule does not need an “asymmetric atom” to have C; symmetry: HOOF in
the conformation shown is C; (has no symmetry).

C; A molecule with only a mirror plane belongs to the group C,. Example: HOF.
Reflection in this plane leaves the molecule apparently unmoved.

C, A molecule with only a C, axis belongs to the group C,. Example: H,O, in
the conformation shown. Rotation about this axis through 360° gives the same
orientation twice. Similarly Cs5, C4, etc. are possible.

C,y A molecule with two mirror planes whose intersection forms a C, axis
belongs to the C,, group. Example: H,O. Similarly NHj is Cs,, pyramidane is Cy,
and HCN is C,.

C; A molecule with only an inversion center (center of symmetry) belongs to the
group C;. Example: meso-tartaric acid in the conformation shown. Moving any
point in the molecule along a straight line to this center, then continuing on an equal
distance leaves the molecule apparently unchanged.

C,n A molecule with a C, axis and a mirror plane horizontal to this axis is Cy}, (a
Cy;, object will also perforce have an inversion center). Example: (E)-1,2-difluor-
oethene. Similarly B(OH)3 is Csj,.

D, A molecule with a C, axis and two more C, axes, perpendicular to that axis,
has D, symmetry. Example: the tetrahydroxycyclobutadiene shown. Similarly, a
molecule with a C; axis (the principal axis) and three other perpendicular C, axes is
D3.

D5, A molecule with a C, axis and two perpendicular C, axes (as for D, above),
plus a mirror plane is Dy;,. Examples: ethene, cyclobutadiene. Similarly, a C; axis
(the principal axis), three perpendicular C, axes and a mirror plane horizontal to the
principal axis confer D3, symmetry, as in the cyclopropenyl cation. Similarly,
benzene is Dgy,, and F, is Dp,.

D,q A molecule is Dy, if it has a C, axis and two perpendicular C, axes (as for D,
above), plus two “dihedral” mirror planes; these are mirror planes that bisect two C,
axes (in general, that bisect the C, axes perpendicular to the principal axis).
Example: allene (propadiene). Staggered ethane is D34 (it has D; symmetry ele-
ments plus three dihedral mirror planes. D,y symmetry can be hard to spot.

Molecules belonging to the cubic point groups can, in some sense, be fitted
symmetrically inside a cube. The commonest of these are Ty, Oy, and I; they will be
simply exemplified:

Tq This is tetrahedral symmetry. Example: CHy,

O,, This might be considered “cubic symmetry”. Example: cubane, SFg.

I Also called icosahedral symmetry. Example: buckminsterfullerene.

Less-common groups are Sy, and the cubic groups T, Ty, (dodecahedrane is Ty,)
and O (see [19,20]). Atkins [19] and Levine [20] give flow charts which
make it relatively simple to assign a molecule to its point group, and Atkins
provides pictures of objects of various symmetries which often make it possible
to assign a point group without having to examine the molecule for its symmetry
elements.
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We saw above that most molecules have no symmetry. So why is a knowledge of
symmetry important in chemistry? Symmetry considerations are essential in the
theory of molecular electronic (UV) spectroscopy and sometimes in analyzing in
detail molecular wavefunctions (Chapter 4), but for us the reasons are more
pragmatic. A calculation run on a molecule whose input structure has the exact
symmetry that the molecule should have will tend to be faster and will yield a
“better” (see below) geometry than one run on an approximate structure, however
close this may be to the exact one. Input molecular structures for a calculation are
usually created with an interactive graphical program and a computer mouse: atoms
are assembled into molecules much as with a model kit, or the molecule might be
drawn on the computer screen. If the molecule has symmetry (if it is not is not C;)
this can be imposed by optimizing the geometry with molecular mechanics
(Chapter 3). Now consider water: we would of course normally input the H,O
molecule with its exact equilibrium C,, symmetry, but we could also alter the input
structure slightly making the symmetry C, (three atoms must lie in a plane). The C,,
structure has two degrees of freedom: a bond length (the two bonds are the same
length) and a bond angle. The C; structure has three degrees of freedom: two bond
lengths and a bond angle. The optimization algorithm has more variables to cope
with in the case of the lower-symmetry structure.

What do we mean by a better geometry? Although a successful geometry
optimization will give essentially the same geometry from a slightly distorted
input structure as from one with the perfect symmetry of the molecule in question,
corresponding bond lengths and angles (e.g. the four C—H bonds and the two HCH
angles of ethene) will not be exactly the same. This can confuse an analysis of the
geometry, and carries over into the calculation of other properties like, say, charges
on atoms — corresponding atoms should have exactly the same charges. Thus both
esthetic and practical considerations encourage us to aim for the exact symmetry
that the molecule should possess.

2.7 Summary

The potential energy surface (PES) is a central concept in computational chemistry.
A PES is the relationship — mathematical or graphical — between the energy of a
molecule (or a collection of molecules) and its geometry.

Stationary points on a PES are points where 0E/0q = 0 for all g, where
q is a geometric parameter. The stationary points of chemical interest are
minima (0°E/ 0giq; > 0 for all ¢) and transition states or first-order saddle points;
azE/aqiqj < 0 for one ¢, along the reaction coordinate (intrinsic reaction coordi-
nate, IRC), and > O for all other ¢g. Chemistry is the study of PES stationary points
and the pathways connecting them.

The Born—Oppenheimer approximation says that in a molecule the nuclei are
essentially stationary compared to the electrons. This is one of the cornerstones
of computational chemistry because it makes the concept of molecular shape
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(geometry) meaningful, makes possible the concept of a PES, and simplifies the
application of the Schrodinger equation to molecules by allowing us to focus on the
electronic energy and add in the nuclear repulsion energy later; this third point, very
important in practical molecular computations, is elaborated on in Chapter 5.

Geometry optimization is the process of starting with an input structure “guess”
and finding a stationary point on the PES. The stationary point found will normally
be the one closest to the input structure, not necessarily the global minimum. A
transition state optimization usually requires a special algorithm, since it is more
demanding than that required to find a minimum. Modern optimization algorithms
use analytic first derivatives and (usually numerical) second derivatives.

It is usually wise to check that a stationary point is the desired species
(a minimum or a transition state) by calculating its vibrational spectrum (its
normal-mode vibrations). The algorithm for this works by calculating an accurate
Hessian (force constant matrix) and diagonalizing it to give a matrix with the
“direction vectors” of the normal modes, and a diagonal matrix with the force
constants of these modes. A procedure of “mass-weighting” the force constants
gives the normal-mode vibrational frequencies. For a minimum all the vibrations
are real, while a transition state has one imaginary vibration, corresponding to
motion along the reaction coordinate. The criteria for a transition state are appear-
ance, the presence of one imaginary frequency corresponding to the reaction
coordinate, and an energy above that of the reactant and the product. Besides
serving to characterize the stationary point, calculation of the vibrational frequen-
cies enables one to predict an IR spectrum and provides the zero-point energy
(ZPE). The ZPE is needed for accurate comparisons of the energies of isomeric
species. The accurate Hessian required for calculation of frequencies and ZPE’s can
be obtained either numerically or analytically (faster, but much more demanding of
hard drive space).
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2 The Concept of the Potential Energy Surface

Easier Questions

—_

What is a potential energy surface (give the two viewpoints)?

. Explain the difference between a relaxed PES and a rigid PES.
. What is a stationary point? What kinds of stationary points are of interest to

chemists, and how do they differ?

What is a reaction coordinate?

Show with a sketch why it is not correct to say that a transition state is a
maximum on a PES.

What is the Born—Oppenheimer approximation, and why is it important?
Explain, for a reaction A — B, how the potential energy change on a PES is
related to the enthalpy change of the reaction. What would be the problem with
calculating a free energy/geometry surface?

Hint: Vibrational frequencies are normally calculated only for stationary
points.

. What is geometry optimization? Why is this process for transition states (often

called transition state optimization) more challenging than for minima?
What is a Hessian? What uses does it have in computational chemistry?

. Why is it usually good practice to calculate vibrational frequencies where practi-

cal, although this often takes considerably longer than geometry optimization?

Harder Questions

. The Born—Oppenheimer principle is often said to be a prerequisite for the

concept of a potential energy surface. Yet the idea of a potential energy surface
(Marcelin 1915) predates the Born—Oppenheimer principle (1927). Discuss.
How high would you have to lift a mole of water for its gravitational potential
energy to be equivalent to the energy needed to dissociate it completely into
hydroxyl radicals and hydrogen atoms? The strength of the O—H bond is about
400 kJ mol ™ '; the gravitational acceleration g at the Earth’s surface (and out to
hundreds of kilometres) is about 10 m s~ 2. What does this indicate about the
role of gravity in chemistry?

. If gravity plays no role in chemistry, why are vibrational frequencies different

for, say, C—H and C-D bonds?

. We assumed that the two bond lengths of water are equal. Must an acyclic

molecule AB, have equal A—B bond lengths? What about a cyclic molecule
AB,?

. Why are chemists but rarely interested in finding and characterizing second-

order and higher saddle points (hilltops)?

. What kind(s) of stationary points do you think a second-order saddle point

connects?
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7.

8.

10.

If a species has one calculated frequency very close to 0 cm ™' what does that
tell you about the (calculated) potential energy surface in that region?

The ZPE of many molecules is greater than the energy needed to break a bond;
for example, the ZPE of hexane is about 530 kJ mol ™', while the strength of a
C—C or a C—H bond is only about 400 kJ mol~'. Why then do such molecules
not spontaneously decompose?

. Only certain parts of a potential energy surface are chemically interesting:

some regions are flat and featureless, while yet other parts rise steeply and are
thus energetically inaccessible. Explain.

Consider two potential energy surfaces for the HCN = HNC reaction: A, a
plot of energy versus the H-C bond length, and B, a plot of energy versus the
HNC angle. Recalling that HNC is the higher-energy species, sketch qualita-
tively the diagrams for A and B.



Chapter 3
Molecular Mechanics

We don’t give a damn where the electrons are.
Words to the author, from the president of a well-known chemical company, emphasizing
his firm’s position on basic research

Abstract Molecular mechanics (MM) rests on a view of molecules as balls held
together by springs. The potential energy of a molecule can be written as the sum of
terms involving bond stretching, angle bending, dihedral angles and nonbonded
interactions. Giving these terms explicit mathematical forms constitutes devising a
forcefield, and giving actual numbers to the constants in the forcefield constitutes
parameterizing the field. An example is given of the devising and parameterization
of an MM forcefield. Calculations on biomolecules is a very important application
of MM, and the pharmaceutical industry designs new drugs with the aid of MM.
Organic synthesis now makes considerable use of MM, which enables chemists to
estimate which products are likely to be favored and to devise more realistic routes
to a target molecule. In molecular dynamics MM is used to generate the forces
acting on molecules and hence to calculate their motions.

3.1 Perspective

Molecular mechanics (MM) [1] is based on a mathematical model of a molecule as
a collection of balls (corresponding to the atoms) held together by springs
(corresponding to the bonds) (Fig. 3.1). Within the framework of this model, the
energy of the molecule changes with geometry because the springs resist being
stretched or bent away from some “natural” length or angle, and the balls resist
being pushed too closely together. The mathematical model is thus conceptually
very close to the intuitive feel for molecular energetics that one obtains when
manipulating molecular models of plastic or metal: the model resists distortions
(it may break!) from the “natural” geometry that corresponds to the bond lengths

E.G. Lewars, Computational Chemistry, 45
DOI 10.1007/978-90-481-3862-3_3, © Springer Science+Business Media B.V. 2011
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Fig. 3.1 Molecular mechanics (the forcefield method) considers a molecule to be a collection of
balls (the atoms) held together by springs (the bonds)

and angles imposed by the manufacturer, and in the case of space-filling models
atoms cannot be forced too closely together. The MM model clearly ignores
electrons.

The principle behind MM is to express the energy of a molecule as a function of
its resistance toward bond stretching, bond bending, and atom crowding, and to use
this energy equation to find the bond lengths, angles, and dihedrals corresponding to
the minimum-energy geometry — or more precisely, to the various possible potential
energy surface minima (Chapter 2). In other words, MM uses a conceptually
mechanical model of a molecule to find its minimum-energy geometry (for flexible
molecules, the geometries of the various conformers). The form of the mathemati-
cal expression for the energy, and the parameters in it, constitute a forcefield, and
molecular mechanics methods are sometimes called forcefield methods. The term
arises because the negative of the first derivative of the potential energy of a particle
with respect to displacement along some direction is the force on the particle; a
“forcefield” E(x, y, z coordinates of atoms) can be differentiated to give the force on
each atom.

The method makes no reference to electrons, and so cannot (except by some kind
of empirical algorithm) throw light on electronic properties like charge distribu-
tions or nucleophilic and electrophilic behaviour. Note that MM implicitly uses the
Born—Oppenheimer approximation, for only if the nuclei experience what amounts
to a static attractive force, whether from electrons or springs, does a molecule have
a distinct geometry (Section 2.3).

An important point, which students sometimes have a problem with, is that the
concept of a bond is central to MM, but not essential — although often useful — in
electronic structure calculations. In MM a molecule is defined by the atoms and the
bonds, which latter are regarded almost literally as springs holding the atoms
together. Usually, bonds are placed where the rules for drawing structural formulas
require them, and to do a MM calculation you must specify each bond as single,
double, etc., since this tells the program how strong a bond to use (Sections 3.2.1
and 3.2.2). In an electronic structure calculation—ab initio (Chapter 5), semiempiri-
cal (Chapter 6), and density functional theory (Chapter 7) —a molecule is defined by
the relative positions of its atomic nuclei, the charge, and the “multiplicity” (which
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follows easily from the number of unpaired electrons). An oxygen nucleus and two
protons with the right x, y, z coordinates, enough electrons for no charge, and
multiplicity one (no unpaired electrons) is a water molecule. There is no need to
mention bonds here, although the chemist might wish to somehow extract this
useful concept from this picture of nuclei and electrons. This can be done by
calculating the electron density and associating a bond with, for example, a path
along which electron density is concentrated, but there is no unique definition of a
bond in electronic structure theory. It is worth noting, too, that in some graphical
interfaces used in computational chemistry bonds are specified by the user, while in
others they are shown by the program depending on the separation of pairs of atoms.
The novice may find it disconcerting to see a specified bond still displayed even
when a change in geometry has moved a pair of atoms far apart, or to see a bond
vanish when a pair has moved beyond the distance recognized by some fudge factor.

Historically [2], molecular mechanics seems to have begun as an attempt to
obtain quantitative information about chemical reactions at a time when the possi-
bility of doing quantitative quantum mechanical (Chapter 4) calculations on any-
thing much bigger than the hydrogen molecule seemed remote. Specifically, the
principles of MM, as a potentially general method for studying the variation of the
energy of molecular systems with their geometry, were formulated in 1946 by
Westheimer! and Meyer [3a], and by Hill [3b]. In this same year Dostrovsky,
Hughes” and Ingold® independently applied molecular mechanics concepts to the
quantitative analysis of the Sy2 reaction, but they do not seem to have recognized
the potentially wide applicability of this approach [3c]. In 1947 Westheimer [3d]
published detailed calculations in which MM was used to estimate the activation
energy for the racemization of biphenyls.

Major contributors to the development of MM have been Schleyer® [2b, c] and
Allinger5 [1c, d]; one of Allinger’s publications on MM [1d] is, according to the
Citation Index, one of the most frequently cited chemistry papers. The Allinger
group has, since the 1960s, been responsible for the development of the
“MM-series” of programs, commencing with MM1 and continuing with the cur-
rently widely-used MM2 and MM3, and MM4 [4]. MM programs [5] like Sybyl and
UFF will handle molecules involving much of the periodic table, albeit with some
loss of accuracy that one might expect for trading breadth for depth, and MM is

"Frank H. Westheimer, born Baltimore, Maryland, 1912. Ph.D. Harvard 1935. Professor University
of Chicago, Harvard. Died 2007.

*Edward D. Hughes, born Wales, 1906. Ph.D. University of Wales, D.Sc. University of London.
Professor, London. Died 1963.

3Christopher K. Ingold, born London 1893. D.Sc. London 1921. Professor Leeds, London.
Knighted 1958. Died London 1970.

“Paul von R. Schleyer, born Cleveland, Ohio, 1930. Ph.D. Harvard 1957. Professor Princeton;
institute codirector and professor University of Erlangen-Niirnberg, 1976—-1998. Professor University
of Georgia.

*Norman L. Allinger, born Rochester New York, 1930. Ph.D. University of California at Los
Angeles, 1954. Professor Wayne State University, University of Georgia.
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the most widely-used method for computing the geometries and energies of
large biological molecules like proteins and nucleic acids (although recently semi-
empirical (Chapter 6) and even ab initio (Chapter 5) methods have begun to be
applied to these large molecules.

3.2 The Basic Principles of Molecular Mechanics

3.2.1 Developing a Forcefield

The potential energy of a molecule can be written

E = Z Estretch + Z Ehend + Z Etor‘sion + Z Enunbond (*31)

bonds angles dihedrals pairs

where E,,..., etc. are energy contributions from bond stretching, angle bending,
torsional motion (rotation) around single bonds, and interactions between atoms or
groups which are nonbonded (not directly bonded together). The sums are over all
the bonds, all the angles defined by three atoms A-B-C, all the dihedral angles
defined by four atoms A-B—C-D, and all pairs of significant nonbonded interac-
tions. The mathematical form of these terms and the parameters in them constitute a
particular forcefield. We can make this clear by being more specific; let us consider
each of these four terms.

leq

a
-
Al=1=lgq +
Aa=a-—ag
energy
0 Aloraa

Fig. 3.2 Changes in bond lengths or in bond angles result in changes in the energy of a molecule.
Such changes are handled by the E,.,, and Ej.,, terms in the molecular mechanics forcefield.
The energy is approximately a quadratic function of the change in bond length or angle
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The Bond Stretching Term The increase in the energy of a spring (remember
that we are modelling the molecule as a collection of balls held together by springs)
when it is stretched (Fig. 3.2) is approximately proportional to the square of the
extension:

AEsfretch - kstretch([ - leq)z

kswreten = the proportionality constant (actually one-half the force constant of the
spring or bond [6]; but note the warning about identifying MM force constants with
the traditional force constant from, say, spectroscopy — see Section 3.3); the bigger
ksiretch, the stiffer the bond/spring — the more it resists being stretched.

| = length of the bond when stretched.

leq = equilibrium length of the bond, its “natural” length.

If we take the energy corresponding to the equilibrium length /. as the zero of
energy, we can replace AE cicn bY Egiretch:

Estretch = strerc'h(l - leq)z (*32)

The Angle Bending Term The increase in energy of system ball-spring-ball-
spring-ball, corresponding to the triatomic unit A—-B—C (the increase in “angle
energy”) is approximately proportional to the square of the increase in the angle
(Fig. 3.2); analogously to Eq. 3.2:

Epena = kbend(a - aeq)z (*33)

kvena = a proportionality constant (one-half the angle bending force constant [6];
note the warning about identifying MM force constants with the traditional force
constant from, say, spectroscopy — see Section 3.3)) a = size of the angle when
distorted a.q = equilibrium size of the angle, its “natural” value.

The Torsional Term Consider four atoms sequentially bonded: A-B-C-D
(Fig. 3.3). The dihedral angle or torsional angle of the system is the angle between
the A-B bond and the C-D bond as viewed along the B—C bond. Conventionally
this angle is considered positive if regarded as arising from clockwise rotation
(starting with A—B covering or eclipsing C—D) of the back bond (C-D) with respect
to the front bond (A-B). Thus in Fig. 3.3 the dihedral angle A-B—C-D is 60°
(it could also be considered as being —300°). Since the geometry repeats itself
every 360°, the energy varies with the dihedral angle in a sine or cosine pattern, as
shown in Fig. 3.4 for the simple case of ethane. For systems A—B—C-D of lower
symmetry, like butane (Fig. 3.5), the torsional potential energy curve is more
complicated, but a combination of sine or cosine functions will reproduce the curve:

Erorsion = ko + Z k;[l + COS(F@)] (*34)
r=1
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rotate C-D bond

A about the B-C bond A
D \ /D
N T e
D
A A 60°
@N/ D
B C B/’ \C
dihedral angle = 0° dihedral angle = 60°

Fig. 3.3 Dihedral angles (torsional angles) affect molecular geometries and energies. The energy
is a periodic (cosine or combination of cosine functions) function of the dihedral angle; see e.g.
Figs. 3.4 and 3.5

H H
energy 12 kJ mol! \ /
kJ mol™" R
\ H:/ \ H
H H

10

120 180 HCCH dihedral, degrees

0 60
”
Dy, Dgy Dy, Dgy

Fig. 3.4 Variation of the energy of ethane with dihedral angle. The curve can be represented as a
cosine function

The Nonbonded Interactions Term This represents the change in potential
energy with distance apart of atoms A and B that are not directly bonded (as in
A-B) and are not bonded to a common atom (as in A—X—B); these atoms, separated
by at least two atoms (A—X-Y-B) or even in different molecules, are said to be
nonbonded (with respect to each other). Note that the A-B case is accounted for by
the bond stretching term Eg e, and the A—X-B term by the angle bending term
Epena, but the nonbonded term E,,,,;0nq 1S, for the A—X—Y—B case, superimposed
upon the torsional term E,,,;,,: We can think of E,,,;,, as representing some factor
inherent to resistance to rotation about a (usually single) bond X-Y (MM does not
attempt to explain the theoretical, electronic basis of this or any other effect), while
for certain atoms attached to X and Y there may also be nonbonded interactions.
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energy
kdJ I~
MO 25 kJ mol
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14 kJ mol™!
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CCCC dihedral, degrees
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CHg

Fig. 3.5 Variation of the energy of butane with dihedral angle. The curve can be represented by a
sum of cosine functions

The potential energy curve for two nonpolar nonbonded atoms has the general
form shown in Fig. 3.6. A simple way to approximate this is by the so-called
Lennard-Jones 12—6 potential [7]:

Eponbona = knp [(g)lz - (%ﬂ (*¥3.5)

r = the distance between the centers of the nonbonded atoms or groups.

The function reproduces the small attractive dip in the curve (represented by the
negative term) as the atoms or groups approach one another, then the very steep rise
in potential energy (represented by the positive, repulsive term raised to a large
power) as they are pushed together closer than their van der Waals radii. Setting dE/
dr = 0, we find that for the energy minimum in the curve the corresponding value of
1S Fmin = 2'/°c

ie. =20y, (3.6)
If we assume that this minimum corresponds to van der Waals contact of the

nonbonded groups, then r,;, = (R + Rp), the sum of the van der Waals radii of the
groups A and B. So

216 = (R + Rg)
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Fig. 3.6 Variation of the energy
energy of a molecule with

separation of nonbonded

atoms or groups. Atoms/

groups A and B may be in the

same molecule (as indicated

here) or the interaction may

be intermolecular. The

minimum energy occurs at

van der Waals contact. For

small nonpolar atoms or 0

groups the minimum energy \//_’ r
point represents a drop of a E. . ieoeeeeooST -

few kI mol ™! (Eppin = —1.2kJ
mol ™! for CH,/CH,), but Co_
short distances can make fmin = (Ra + Rg)
nonbonded interactions
destabilize a molecule by
many kJ mol ™"

\

and so
o =2""Y%(RA +Rg) =0.89 (Rs + Rg) (3.7)

Thus o can be calculated from r,;, or estimated from the van der Waals radii.
Setting £ = 0, we find that for this point on the curve r = G,

ie. o=r(E=0) (3.8)
If we set 7 = rpin = 2'/°c (from Eq. 3.6) in Eq. 3.5, we find
E(r = rmin) = (—1/4)knp
ie.
koo = —4E(r = rumin) (3.9
So kyp, can be calculated from the depth of the energy minimum.

In deciding to use equations of the form (3.2), (3.3), (3.4) (3.5) we have decided
on a particular MM forcefield. There are many alternative forcefields. For example,
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we might have chosen to approximate E .., by the sum of a quadratic and a cubic
term:

Eslrelch = kslretch (l - Zeq)z + k(l - leq)3

This gives a somewhat more accurate representation of the variation of energy
with length. Again, we might have represented the nonbonded interaction energy by
a more complicated expression than the simple 12—6 potential of Eq. 3.5 (which is
by no means the best form for nonbonded repulsions). Such changes would repre-
sent changes in the forcefield.

3.2.2 Parameterizing a Forcefield

We can now consider putting actual numbers, Kyerchs Legs Kpena» €1C., into Egs. 3.2,
3.3, 3.4 and 3.5, to give expressions that we can actually use. The process of
finding these numbers is called parameterizing (or parametrizing) the forcefield.
The set of molecules used for parameterization, perhaps 100 for a good forcefield, is
called the training set. In the purely illustrative example below we use just ethane,
methane and butane.

Parameterizing the Bond Stretching Term A forcefield can be parameterized
by reference to experiment (empirical parameterization) or by getting the numbers
from high-level ab initio or density functional calculations, or by a combination of
both approaches. For the bond stretching term of Eq. 3.2 we need kgerch and e
Experimentally, kgecn could be obtained from IR spectra, as the stretching fre-
quency of a bond depends on the force constant (and the masses of the atoms
involved) [8], and /., could be derived from X-ray diffraction, electron diffraction,
or microwave spectroscopy [9].

Let us find kg, for the C/C bond of ethane by ab initio (Chapter 5) calcula-
tions. Normally high-level ab initio calculations would be used to parameterize a
forcefield, but for illustrative purposes we can use the low-level but fast STO-3G
method [10]. Equation 3.2 shows that a plot of E,.,., against (l—leq)2 should be
linear with a slope of kg;,.,.,. Table 3.1 and Fig. 3.7 show the variation of the energy

Table 3.1 Change in energy as the C—C bond in CH;—CHj is stretched away fron} its equilibrium
length. The calculations are ab initio (STO-3G; Chapter 5). Bond lengths are in A

C—C length, / [~ g (I = I’ Egrerchs kJ mol ™!
1.538 0 0 0

1.550 0.012 0.00014 0.29

1.560 0.022 0.00048 0.89

1.570 0.032 0.00102 1.86

1.580 0.042 0.00176 3.15

1.590 0.052 0.00270 475

1.600 0.062 0.00384 6.67
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Estretchv kJ m°|_1

0 [ [ [ [
0.001 0.002 0.003 0004 (/—/e)? A2

Fig. 3.7 Energy vs. the square of the extension of the C—C bond in CH3—CHj. The data in
Table 3.1 were used

of ethane with stretching of the C/C bond, as calculated by the ab initio STO-3G
method. The equilibrium bond length has been taken as the STO-3G length:
l;(C—C)=1538A (3.10)
The slope of the graph is
kstrercn(C — C) = 1,735 kJ mol 'A~? (3.11)

Similarly, the CH bond of methane was stretched using ab initio STO-3G
calculations; the results are

lg(C—H) = 1.083A (3.12)

Kereren(C — H)1.934 kJ mol ! A2 (3.13)

Parameterizing the Angle Bending Term From Eq. 3.3, a plot of E,,,,; against

(a—ae,{)2 should be linear with a slope of kp.,;. From STO-3G calculations on
bending the H-C-C angle in ethane we get (cf. Table 3.1 and Fig. 3.7)

a0y (HCC) = 110.7° (3.14)

kpena(HCC) = 0.093kJ mol ' deg > (3.15)
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Table 3.2 The experimental potential energy values for rotation about the central C-C
bond of CH;CH,-CH,CHj; can be approximated by Ejsion(CH3CH, — CHoCH3) = ko+
4
>~ ke[l + cos(r0)] with kg = 20.1, ky = —4.7, ky = 191, ks = —7.75, k4 = 0.58. Experimental
r=1

energy values at 30°, 90°, and 150° were interpolated from those at 0°, 60°, 120°, and 180°;
energies are in kJ mol '

0 (deg) E (calculated) E (experimental)
0 0.15 0

30 6.7 7.0

60 14 14

90 8.8 9.0

120 35 33

150 15 15

180 25 25

Calculations on staggered butane gave for the C—C—C angle
a.,q(CCC) = 112.5° (3.16)
Kpena(CCC) = 0.110 KI mol ~'deg (3.17)

Parameterizing the Torsional Term For the ethane case (Fig. 3.4), the equation
for energy as a function of dihedral angle can be deduced fairly simply by adjusting
the basic equation E = cos 6 to give E = 1/2E,.x[1 + cos3(0 + 60)].

For butane (Fig. 3.5), using Eq. 3.4 and experimenting with a curve-fitting
program shows that a reasonably accurate torsional potential energy function can
be created with five parameters, ko and ki—ky4:

4
Evorsion(CH3CH, — CH,CH3) = ko + » _ k,[1 4 cos(r0))] (3.18)

r=1

The values of the parameters kp—ks are given in Table 3.2. The calculated curve
can be made to match the experimental one as closely as desired by using more
terms (Fourier analysis).

Parameterizing the Nonbonded Interactions Term To parameterize Eq. 3.5 we
might perform ab initio calculations in which the separation of two atoms or groups
in different molecules (to avoid the complication of concomitant changes in bond
lengths and angles) is varied, and fit Eq. 3.5 to the energy vs. distance results. For
nonpolar groups this would require quite high-level calculations (Chapter 5), as van
der Waals or dispersion forces are involved. We shall approximate the nonbonded
interactions of methyl groups by the interactions of methane molecules, using
experimental values of k., and o, derived from studies of the viscosity or the
compressibility of methane. The two methods give slightly different values [7b],
but we can use the values

ku = 4.7kJ mol ™! (3.19)
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and
c=3.85A (3.20)

Summary of the Parameterization of the Forcefield Terms The four terms of
Eq. 3.1 were parameterized to give:

Eggreren(C — C) = 1735(1 — 1.538)* (3.21)
Eggreren(C — H) = 1934(1 — 1.083)* (3.22)
Epena(HCH) = 0.093(a — 110.7)* (3.23)
Epena(CCC) = 0.110(a — 112.5)? (3.24)

4
Eiorsion(CHSCCCH3) = ko + > _ k[1 + cos(r0)] (3.25)

r=1

The parameters k of Eq. 3.25 are given in Table 3.2.

12 6
Enonbona(CH3 /CH3) = 4.7 [(g) - (&> 1 (3.26)

r

Note that this parameterization is only illustrative of the principles involved;
any really viable forcefield would actually be much more sophisticated. The kind
we have developed here might at the very best give crude estimates of the energies
of alkanes. An accurate, practical forcefield would be parameterized as a best fit
to many experimental and/or calculational results, and would have different para-
meters for different kinds of bonds, e.g. C—C for acyclic alkanes, for cyclobutane
and for cyclopropane. A forcefield able to handle not only hydrocarbons would
obviously need parameters involving elements other than hydrogen and carbon.
Practical forcefields also have different parameters for various atom types, like sp’
carbon vs. sp” carbon, or amine nitrogen vs. amide nitrogen. In other words, a
different value would be used for, say, stretching involving an sp>/sp® C—C bond
than for an sp?/sp> C—C bond. This is clearly necessary since the force constant of a
bond depends on the hybridization of the atoms involved; the IR stretch frequency
for the spC/sp®C bond comes at roughly 1,200 cm ™", while that for the sp>C/sp*C
bond is about 1,650 cm™' [8]. Since the vibrational frequency of a bond is
proportional to the square root of the force constant, the force constants are in the
ratio of about (1,650/ 1,200)2 = 1.9; for corresponding atoms, force constants are in
fact generally roughly proportional to bond order (double bonds and triple bonds
are about two and three times as stiff, respectively, as the corresponding single
bonds). Some forcefields account for the variation of bond order with conformation
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(twisting p orbitals out of alignment reduces their overlap) by performing a simple
PPP molecular orbital calculation (Chapter 6) to obtain the bond order.

A sophisticated forcefield might also consider H/H nonbonded interactions
explicitly, rather than simply subsuming them into methyl/methyl interactions
(combining atoms into groups is the feature of a united atom forcefield). Further-
more, nonbonding interactions between polar groups need to be accounted for in a
field not limited to hydrocarbons. These are usually handled by the well-known
potential energy/electrostatic charge relationship

E = k(q192/7)

which has also been used to model hydrogen bonding [11].

A subtler problem with the naive forcefield developed here is that stretching,
bending, torsional and nonbonded terms are not completely independent. For
example, the butane torsional potential energy curve (Fig. 3.5) does not apply
precisely to all CH3;—C—C—-CHj; systems, because the barrier heights will vary
with the length of the central C—C bond, obviously decreasing (other things being
equal) as the bond is lengthened, since there will be a decrease in the interactions
(whatever causes them) between the CH3’s and H’s on one of the carbons of the
central C—C and those on the other carbon. This could be accounted for by making
the k’s of Eq. 3.25 a function of the X-Y length. Actually, partitioning the energy of
amolecule into stretching, bending, etc. terms is somewhat formal; for example, the
torsional barrier in butane can be considered to be partly due to nonbonded
interactions between the methyl groups. It should be realized that there is no one,
right functional form for an MM forcefield (see, e.g., [ 1b]); accuracy, versatility and
speed of computation are the deciding factors in devising a forcefield.

3.2.3 A Calculation Using Our Forcefield

Let us apply the naive forcefield developed here to comparing the energies of two
2,2,3,3-tetramethylbutane ((CH3);CC(CHs)s, i.e. r-Bu-Bu-f) geometries. We com-
pare the energy of structure 1 (Fig. 3.8) with all the bond lengths and angles at our
“natural” or standard values (i.e. at the STO-3G values we took as the equilibrium
bond lengths and angles in Section 3.2.2) with that of structure 2, where the central
C-C bond has been stretched from 1.538 A to 1.600 10\, but all other bond lengths, as
well as the bond angles and dihedral angles, are unchanged. Figure 3.8 shows the
nonbonded distances we need, which would be calculated by the program from
bond lengths, angles and dihedrals. Using Eq. 3.1:

<E = Z Estrel(?h + Z Ehend + Z Eiarsion + ZEnonbond>

bonds angles dihedrals pairs
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keeping bond angles and H,C™ :
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Fig. 3.8 Structures for a simple MM “by hand” calculation on the effect of changing the central
C—C length of (CH3)3;C—C(CH3); from 1.538