纳米人

崔屹:锂电池Si负极11代纳米技术!

纳米人
2018-05-29


对于锂离子电池而言,Si负极比传统石墨负极比容量大10倍,在这个能源短缺的时代,Si负极锂离子电池技术前景诱人。但是体相Si颗粒至少存在以下两大问题,影响电学传导,并造成容量降低,最终导致电池失效,大大缩短了电池的使用寿命:

1)充放电过程中体积膨胀高达420%,容易导致颗粒和电机的破裂。

2)充放电过程中发生副反应,形成不稳定、不导电的固体电解质界面SEI膜。

 

崔屹团队多年来致力于应用纳米技术改善锂离子电池的硅负极性能,根据崔屹教授的讲座,本文简要整理了他们开发的11代硅负极电池纳米技术。

 

 

1. Nanowire

 

    解决了体积变化的问题

 

 

参考文献:C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui "High Performance Lithium Battery Anodes Using Silicon Nanowires" Nature Nanotech. 2008, 3, 31-35.

 

2. core-shell nanowire

 

提高循环寿命

 

 

参考文献:L.-F. Cui, R. Ruffo, C. K. Chan, H. Peng, Y. Cui "Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes" Nano Lett. 9, 2009, 491-495.

 

3. Hollow

 

进一步解决体积变化问题,提高循环性能

 

 

参考文献:Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, "Interconnected Silicon Hollow Nanospheres for Lithium-Ion BatteryAnodes with Long Cycle Life ", Nano Letters ,2011.

 

4. Double Walled Hollow


定的SEI膜

 

 

参考文献:H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, "Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control,"  Nature Nanotechnology , 2012.

 

5. Yolk-Shell

 

高容量(∼2800 mAh/g,C/10), 高循环性 (1000 cycles,74% 容量保持率), 以及高库伦效率(99.84%)的统一。

 

 

 

参考文献:N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui. "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes,"  Nano Letters , 2012.

 

6. Si hydrogel

 

提高导电性,可规模化制备,

 

 

参考文献:H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao, and Y. Cui, "Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles," Nature Communications, 2013.

 

7. Self-healing

 

微米Si颗粒,提高循环寿命

 

 

参考文献:C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, and Z. Bao, "Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries," Nature Chemistry, 2013, 5, 1042-1048 .

 

8. Pomegranate-Like

 

提高堆密度

 

 

参考文献:N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. Zhao, and Y. Cui, "A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes", Nature Nanotechnology, 2014, 9, 187-192.

 

9. Porous Si

 

微米Si颗粒,稳定的SEI膜

 

 

参考文献:Z. Lu, N. Liu, H.-W. Lee, J. Zhao, W. Li, Y. Li, and Y. Cui, "Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes", ACS Nano, 2015.

 

10. Prelithiation of Si Anodes

 

解决了第一次循环导致的容量损失问题

 

 

 

参考文献:J. Zhao, Z. Lu, N. Liu, H.-W. Lee, M. T. McDowell, and Y. Cui, "Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents", Nature Communications, 2014.

 

11. Micro Si-Graphene Cage

 

微米Si纳米颗粒,优异的导电性、机械稳定性和化学稳定性,稳定的SEI膜,长期的循环寿命得到统一

 

 

参考文献:Y. Li, K.Yan, H.-W. Lee, Z. Lu, N. Liu, and Y. Cui, "Growth of conformal graphene cages on micrometre-sized particles as stable battery anodes", Nature Energy, 2016, 1, 15029.



本文主要参考以上所列资料,图片和视频仅用于对相关科学作品的介绍、评论以及课堂教学或科学研究,不得作为商业用途。如有任何版权问题,请随时与我们联系!



版权声明:

本平台根据相关科技期刊文献、教材以及网站编译整理的内容,仅用于对相关科学作品的介绍、评论以及课堂教学或科学研究,不得作为商业用途。

万言堂

纳米人 见微知著